Del, or nabla, is an
operator used in mathematics (particularly in
vector calculus
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subject ...
) as a
vector differential operator
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and return ...
, usually represented by the
nabla symbol ∇. When applied to a
function defined on a
one-dimensional
In physics and mathematics, a sequence of ''n'' numbers can specify a location in ''n''-dimensional space. When , the set of all such locations is called a one-dimensional space. An example of a one-dimensional space is the number line, where the ...
domain, it denotes the standard
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
of the function as defined in
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
. When applied to a ''field'' (a function defined on a multi-dimensional domain), it may denote any one of three operators depending on the way it is applied: the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
or (locally) steepest slope of a
scalar field
In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
(or sometimes of a
vector field, as in the
Navier–Stokes equations); the
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
of a vector field; or the
curl
cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL".
History
cURL was fi ...
(rotation) of a vector field.
Strictly speaking, del is not a specific operator, but rather a convenient
mathematical notation
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations and any other mathematical objects, and assembling them into expressions and formulas. Mathematical notation is widely used in mathematic ...
for those three operators that makes many
equations
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in F ...
easier to write and remember. The del symbol (or nabla) can be interpreted as a vector of
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
operators; and its three possible meanings—gradient, divergence, and curl—can be formally viewed as the
product with a scalar, a
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
, and a
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is ...
, respectively, of the "del operator" with the field. These formal products do not necessarily
commute
Commute, commutation or commutative may refer to:
* Commuting, the process of travelling between a place of residence and a place of work
Mathematics
* Commutative property, a property of a mathematical operation whose result is insensitive to th ...
with other operators or products. These three uses, detailed below, are summarized as:
* Gradient:
* Divergence:
* Curl:
Definition
In the
Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
R
with coordinates
and
standard basis
In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the c ...
, del is defined in terms of
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
operators as
:
Where the expression in parentheses is a row vector. In
three-dimensional
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal ...
Cartesian coordinate system R
3 with coordinates
and standard basis or unit vectors of axes
, del is written as
:
:Example:
:
:
:
Del can also be expressed in other coordinate systems, see for example
del in cylindrical and spherical coordinates.
Notational uses
Del is used as a shorthand form to simplify many long mathematical expressions. It is most commonly used to simplify expressions for the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
,
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
,
curl
cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL".
History
cURL was fi ...
,
directional derivative, and
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
.
Gradient
The vector derivative of a
scalar field
In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
is called the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
, and it can be represented as:
:
It always points in the
direction of greatest increase of
, and it has a
magnitude equal to the maximum rate of increase at the point—just like a standard derivative. In particular, if a hill is defined as a height function over a plane
, the gradient at a given location will be a vector in the xy-plane (visualizable as an arrow on a map) pointing along the steepest direction. The magnitude of the gradient is the value of this steepest slope.
In particular, this notation is powerful because the gradient product rule looks very similar to the 1d-derivative case:
:
However, the rules for
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
s do not turn out to be simple, as illustrated by:
:
Divergence
The
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
of a
vector field
is a
scalar field
In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
that can be represented as:
:
The divergence is roughly a measure of a vector field's increase in the direction it points; but more accurately, it is a measure of that field's tendency to converge toward or diverge from a point.
The power of the del notation is shown by the following product rule:
:
The formula for the
vector product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is d ...
is slightly less intuitive, because this product is not commutative:
:
Curl
The
curl
cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL".
History
cURL was fi ...
of a vector field
is a
vector function that can be represented as:
:
The curl at a point is proportional to the on-axis torque that a tiny pinwheel would be subjected to if it were centred at that point.
The vector product operation can be visualized as a pseudo-
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
:
:
Again the power of the notation is shown by the product rule:
:
Unfortunately the rule for the vector product does not turn out to be simple:
:
Directional derivative
The
directional derivative of a scalar field
in the direction
is defined as:
:
This gives the rate of change of a field
in the direction of
, scaled by the magnitude of
. In operator notation, the element in parentheses can be considered a single coherent unit;
fluid dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
uses this convention extensively, terming it the
convective derivative—the "moving" derivative of the fluid.
Note that
is an operator that takes scalar to a scalar. It can be extended to operate on a vector, by separately operating on each of its components.
Laplacian
The
Laplace operator
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
is a scalar operator that can be applied to either vector or scalar fields; for cartesian coordinate systems it is defined as:
:
and the definition for more general coordinate systems is given in
vector Laplacian.
The Laplacian is ubiquitous throughout modern
mathematical physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
, appearing for example in
Laplace's equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
\nabla^2\! f = 0 or \Delta f = 0,
where \Delta = \nab ...
,
Poisson's equation
Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with th ...
, the
heat equation
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for t ...
, the
wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
, and the
Schrödinger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
.
Hessian matrix
While
usually represents the
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
, sometimes
also represents the
Hessian matrix. The former refers to the inner product of
, while the latter refers to the dyadic product of
:
:
.
So whether
refers to a Laplacian or a Hessian matrix depends on the context.
Tensor derivative
Del can also be applied to a vector field with the result being a
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
. The
tensor derivative of a vector field
(in three dimensions) is a 9-term second-rank tensor – that is, a 3×3 matrix – but can be denoted simply as
, where
represents the
dyadic product. This quantity is equivalent to the transpose of the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as ...
of the vector field with respect to space. The divergence of the vector field can then be expressed as the
trace
Trace may refer to:
Arts and entertainment Music
* Trace (Son Volt album), ''Trace'' (Son Volt album), 1995
* Trace (Died Pretty album), ''Trace'' (Died Pretty album), 1993
* Trace (band), a Dutch progressive rock band
* The Trace (album), ''The ...
of this matrix.
For a small displacement
, the change in the vector field is given by:
:
Product rules
For
vector calculus
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subject ...
:
:
For
matrix calculus (for which
can be written
):
:
Another relation of interest (see e.g. ''
Euler equations'') is the following, where
is the
outer product
In linear algebra, the outer product of two coordinate vector
In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An ea ...
tensor:
:
Second derivatives
When del operates on a scalar or vector, either a scalar or vector is returned. Because of the diversity of vector products (scalar, dot, cross) one application of del already gives rise to three major derivatives: the gradient (scalar product), divergence (dot product), and curl (cross product). Applying these three sorts of derivatives again to each other gives five possible second derivatives, for a scalar field ''f'' or a vector field ''v''; the use of the scalar
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
and
vector Laplacian gives two more:
:
These are of interest principally because they are not always unique or independent of each other. As long as the functions are well-behaved (
in most cases), two of them are always zero:
:
Two of them are always equal:
:
The 3 remaining vector derivatives are related by the equation:
:
And one of them can even be expressed with the tensor product, if the functions are well-behaved:
:
Precautions
Most of the above vector properties (except for those that rely explicitly on del's differential properties—for example, the product rule) rely only on symbol rearrangement, and must necessarily hold if the del symbol is replaced by any other vector. This is part of the value to be gained in notationally representing this operator as a vector.
Though one can often replace del with a vector and obtain a vector identity, making those identities mnemonic, the reverse is ''not'' necessarily reliable, because del does not commute in general.
A counterexample that relies on del's failure to commute:
:
A counterexample that relies on del's differential properties:
:
Central to these distinctions is the fact that del is not simply a vector; it is a
vector operator
A vector operator is a differential operator used in vector calculus. Vector operators are defined in terms of del, and include the gradient, divergence, and Curl (mathematics), curl:
:\begin
\operatorname &\equiv \nabla \\
\operatorname &\equiv ...
. Whereas a vector is an object with both a magnitude and direction, del has neither a magnitude nor a direction until it operates on a function.
For that reason, identities involving del must be derived with care, using both vector identities and ''differentiation'' identities such as the product rule.
See also
*
Del in cylindrical and spherical coordinates
*
Notation for differentiation
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with t ...
*
Vector calculus identities
The following are important identities involving derivatives and integrals in vector calculus.
Operator notation
Gradient
For a function f(x, y, z) in three-dimensional Cartesian coordinate variables, the gradient is the vector field:
\o ...
*
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
*
Navier–Stokes equations
*
Table of mathematical symbols
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. ...
*
Quabla operator
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: \Box), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (''cf''. nabla symbol) is the Laplace operator of ...
References
*
Willard Gibbs
Josiah Willard Gibbs (; February 11, 1839 – April 28, 1903) was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in t ...
&
Edwin Bidwell Wilson (1901)
Vector Analysis
Vector calculus, or vector analysis, is concerned with derivative, differentiation and integral, integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for ...
,
Yale University Press
Yale University Press is the university press of Yale University. It was founded in 1908 by George Parmly Day, and became an official department of Yale University in 1961, but it remains financially and operationally autonomous.
, Yale Universi ...
, 1960:
Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books ...
.
*
*
* {{cite web , author=Arnold Neumaier , editor=Cleve Moler , url=http://www.netlib.org/na-digest-html/98/v98n03.html#2 , title=History of Nabla , series=NA Digest, Volume 98, Issue 03 , publisher=netlib.org , date=January 26, 1998
External links
A survey of the improper use of ∇ in vector analysis(1994) Tai, Chen
Vector calculus
Mathematical notation
Differential operators