De Rham Current
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, more particularly in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
,
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
, and
geometric measure theory In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfa ...
, a ''k''-current in the sense of
Georges de Rham Georges de Rham (; 10 September 1903 – 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology. Biography Georges de Rham was born on 10 September 1903 in Roche, a small village in the canton of Vaud in ...
is a
functional Functional may refer to: * Movements in architecture: ** Functionalism (architecture) ** Form follows function * Functional group, combination of atoms within molecules * Medical conditions without currently visible organic basis: ** Functional sy ...
on the space of
compactly supported In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smalles ...
differential ''k''-forms, on a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
''M''. Currents formally behave like
Schwartz distribution Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives d ...
s on a space of differential forms, but in a geometric setting, they can represent integration over a submanifold, generalizing the
Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ...
, or more generally even
directional derivative In mathematics, the directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity s ...
s of delta functions (
multipole A multipole expansion is a Series (mathematics), mathematical series representing a Function (mathematics), function that depends on angles—usually the two angles used in the spherical coordinate system (the polar and Azimuth, azimuthal angles) f ...
s) spread out along subsets of ''M''.


Definition

Let \Omega_c^m(M) denote the space of smooth ''m''-
forms Form is the shape, visual appearance, or configuration of an object. In a wider sense, the form is the way something happens. Form also refers to: *Form (document), a document (printed or electronic) with spaces in which to write or enter data * ...
with
compact support In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest ...
on a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
M. A current is a
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the s ...
on \Omega_c^m(M) which is continuous in the sense of
distribution Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations * Probability distribution, the probability of a particular value or value range of a vari ...
s. Thus a linear functional T : \Omega_c^m(M)\to \R is an ''m''-dimensional current if it is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
in the following sense: If a sequence \omega_k of smooth forms, all supported in the same compact set, is such that all derivatives of all their coefficients tend uniformly to 0 when k tends to infinity, then T(\omega_k) tends to 0. The space \mathcal D_m(M) of ''m''-dimensional currents on M is a
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
with operations defined by (T+S)(\omega) := T(\omega)+S(\omega),\qquad (\lambda T)(\omega) := \lambda T(\omega). Much of the theory of distributions carries over to currents with minimal adjustments. For example, one may define the support of a current T \in \mathcal_m(M) as the complement of the biggest
open set In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
U \subset M such that T(\omega) = 0 whenever \omega \in \Omega_c^m(U) The
linear subspace In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, li ...
of \mathcal D_m(M) consisting of currents with support (in the sense above) that is a compact subset of M is denoted \mathcal E_m(M).


Homological theory

Integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
over a compact rectifiable oriented submanifold ''M'' ( with boundary) of dimension ''m'' defines an ''m''-current, denoted by M: M(\omega)=\int_M \omega. If the
boundary Boundary or Boundaries may refer to: * Border, in political geography Entertainment *Boundaries (2016 film), ''Boundaries'' (2016 film), a 2016 Canadian film *Boundaries (2018 film), ''Boundaries'' (2018 film), a 2018 American-Canadian road trip ...
∂''M'' of ''M'' is rectifiable, then it too defines a current by integration, and by virtue of
Stokes' theorem Stokes's theorem, also known as the Kelvin–Stokes theorem Nagayoshi Iwahori, et al.:"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12Written in Japanese)Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" :ja:培風館, Bai-Fu-Kan( ...
one has: \partial M(\omega) = \int_\omega = \int_M d\omega = M(d\omega). This relates the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
''d'' with the
boundary operator In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of t ...
∂ on the
homology Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor * Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chrom ...
of ''M''. In view of this formula we can ''define'' a boundary operator on arbitrary currents \partial : \mathcal D_ \to \mathcal D_m via duality with the exterior derivative by (\partial T)(\omega) := T(d\omega) for all compactly supported ''m''-forms \omega. Certain subclasses of currents which are closed under \partial can be used instead of all currents to create a homology theory, which can satisfy the
Eilenberg–Steenrod axioms In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homo ...
in certain cases. A classical example is the subclass of integral currents on Lipschitz neighborhood retracts.


Topology and norms

The space of currents is naturally endowed with the
weak-* topology In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a ...
, which will be further simply called ''weak convergence''. A
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
T_k of currents, converges to a current T if T_k(\omega) \to T(\omega),\qquad \forall \omega. It is possible to define several norms on subspaces of the space of all currents. One such norm is the ''mass norm''. If \omega is an ''m''-form, then define its comass by \, \omega\, := \sup\. So if \omega is a
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
''m''-form, then its mass norm is the usual L-norm of its coefficient. The mass of a current T is then defined as \mathbf M (T) := \sup\. The mass of a current represents the ''weighted area'' of the generalized surface. A current such that M(''T'') < ∞ is representable by integration of a regular Borel measure by a version of the
Riesz representation theorem :''This article describes a theorem concerning the dual of a Hilbert space. For the theorems relating linear functionals to measures, see Riesz–Markov–Kakutani representation theorem.'' The Riesz representation theorem, sometimes called the R ...
. This is the starting point of homological integration. An intermediate norm is Whitney's ''flat norm'', defined by \mathbf F (T) := \inf \. Two currents are close in the mass norm if they coincide away from a small part. On the other hand, they are close in the flat norm if they coincide up to a small deformation.


Examples

Recall that \Omega_c^0(\R^n)\equiv C^\infty_c(\R^n) so that the following defines a 0-current: T(f) = f(0). In particular every signed
regular measure In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topologi ...
\mu is a 0-current: T(f) = \int f(x)\, d\mu(x). Let (''x'', ''y'', ''z'') be the coordinates in \R^3. Then the following defines a 2-current (one of many): T(a\,dx\wedge dy + b\,dy\wedge dz + c\,dx\wedge dz) := \int_0^1 \int_0^1 b(x,y,0)\, dx \, dy.


See also

*
Georges de Rham Georges de Rham (; 10 September 1903 – 9 October 1990) was a Swiss mathematician, known for his contributions to differential topology. Biography Georges de Rham was born on 10 September 1903 in Roche, a small village in the canton of Vaud in ...
*
Herbert Federer Herbert Federer (July 23, 1920 – April 21, 2010) was an American mathematician. He is one of the creators of geometric measure theory, at the meeting point of differential geometry and mathematical analysis.Parks, H. (2012''Remembering Herbert ...
*
Differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
*
Varifold In mathematics, a varifold is, loosely speaking, a measure-theoretic generalization of the concept of a differentiable manifold, by replacing differentiability requirements with those provided by rectifiable sets, while maintaining the general a ...


Notes


References

* * * * * . * {{PlanetMath attribution, id=5980, title=Current Differential topology Functional analysis Generalized functions Generalized manifolds