HOME

TheInfoList



OR:

Damage-associated molecular patterns (DAMPs) are molecules within cells that are a component of the
innate immune response The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the ...
released from damaged or dying cells due to trauma or an infection by a pathogen. They are also known as danger-associated molecular patterns, danger signals, and alarmin because they serve as a warning sign for the organism to alert it of any damage or infection to its cells. DAMPs are endogenous danger signals that are discharged to the extracellular space in response to damage to the cell from trauma or pathogen. Once a DAMP is released from the cell, it promotes a noninfectious inflammatory response by binding to a pattern-recognition receptor. Inflammation is a key aspect of the innate immune response because it is used to help mitigate future damage to the organism by removing harmful invaders from the affected area and start the healing process. As an example, the cytokine IL-1α is a DAMP that originates within the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
of the cell, which once released to the extracellular space, binds to the PRR IL-1R, which in turn initiates an inflammatory response to the trauma or pathogen that initiated the release of IL-1 α. In contrast to the noninfectious inflammatory response produced by DAMPs, pathogen-associated molecular patterns initiate and perpetuate the ''infectious'' pathogen-induced inflammatory response. Many DAMPs are nuclear or cytosolic proteins with defined intracellular function that are released outside the cell following tissue injury. This displacement from the intracellular space to the extracellular space moves the DAMPs from a reducing to an oxidizing environment, causing their functional denaturation, resulting in their loss of function. Outside of the aforementioned nuclear and cytosolic DAMPs, there are other DAMPs originated from different sources, such as
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
, granules, the extracellular matrix, the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
, and the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
.


Overview

DAMPs and their receptors are characterized as:


History

Two papers appearing in 1994 presaged the deeper understanding of innate immune reactivity, dictating the subsequent nature of the adaptive immune response. The first came from transplant surgeons who conducted a prospective randomized, double-blind, placebo-controlled trial. Administration of recombinant human
superoxide dismutase Superoxide dismutase (SOD, ) is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide () radical into ordinary molecular oxygen (O2) and hydrogen peroxide (). Superoxide is produced as a by-product of oxygen me ...
(rh-SOD) in recipients of cadaveric renal allografts demonstrated prolonged patient and graft survival with improvement in both acute and chronic rejection events. They speculated that the effect was related to its
antioxidant Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubricant ...
action on the initial ischemia/reperfusion injury of the renal allograft, thereby reducing the immunogenicity of the allograft and the "grateful dead" of stressed cells. Thus, free radical-mediated reperfusion injury was seen to contribute to the process of innate and subsequent adaptive immune responses. The second suggested the possibility that the immune system detected "danger", through a series of what is now called damage-associated molecular pattern molecules (DAMPs), working in concert with both positive and negative signals derived from other tissues. Thus, these papers presaged the modern sense of the role of DAMPs and redox reviewed here, important apparently for both plant and animal resistance to pathogens and the response to cellular injury or damage. Although many immunologists had earlier noted that various "danger signals" could initiate innate immune responses, the "DAMP" was first described by Seong and Matzinger in 2004.


Examples

DAMPs vary greatly depending on the type of cell ( epithelial or mesenchymal) and injured tissue, but they all share the common feature of stimulating an innate immune response within an organism. * Protein DAMPs include intracellular proteins, such as
heat-shock proteins Heat shock proteins (HSP) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including expo ...
or HMGB1, and materials derived from the extracellular matrix that are generated following tissue injury, such as hyaluronan fragments. * Non-protein DAMPs include ATP, uric acid, heparin sulfate and DNA.


In humans


Protein DAMPs

# High-mobility group box 1: HMGB1, a member of the HMG protein family, is a prototypical chromatin-associated LSP (leaderless secreted protein), secreted by hematopoietic cells through a lysosome-mediated pathway. HMGB1 is a major mediator of endotoxin shock and is recognized as a DAMP by certain immune cells, triggering an inflammatory response. It is known to induce inflammation by activating NF-kB pathway by binding to TLR, TLR4, TLR9, and RAGE (receptor for advanced glycation end products). HMGB1 can also induce
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
maturation via upregulation of CD80, CD83, CD86 and CD11c, and the production of other pro-inflammatory cytokines in
myeloid cells A myelocyte is a young cell of the granulocytic series, occurring normally in bone marrow (can be found in circulating blood when caused by certain diseases). Structure When stained with the usual dyes, the cytoplasm is distinctly basophilic ...
(IL-1, TNF-a, IL-6, IL-8), and it can lead to increased expression of cell adhesion molecules (ICAM-1, VCAM-1) on endothelial cells. # DNA and RNA: The presence of DNA anywhere other than the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
or
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
is perceived as a DAMP and triggers responses mediated by TLR9 and DAI that drive cellular activation and immunoreactivity. Some tissues, such as the gut, are inhibited by DNA in their immune response because the gut is filled with trillions of
microbiota Microbiota are the range of microorganisms that may be commensal, symbiotic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found t ...
, which help break down food and regulate the immune system. Without being inhibited by DNA, the gut would detect these microbiota as invading pathogens, and initiate a inflammatory response, which would be detrimental for the organism's health because while the microbiota may be foreign molecules inside the host, they are crucial in promoting host health. Similarly, damaged RNAs released from UVB-exposed keratinocytes activate TLR3 on intact keratinocytes. TLR3 activation stimulates TNF-alpha and IL-6 production, which initiate the cutaneous inflammation associated with sunburn. # S100 proteins: S100 is a multigenic family of calcium modulated proteins involved in intracellular and extracellular regulatory activities with a connection to cancer as well as tissue, particularly neuronal, injury. Their main function is the management of calcium storage and shuffling. Although they have various functions, including
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation re ...
, differentiation, migration, and energy metabolism, they also act as DAMPs by interacting with their receptors (TLR2, TLR4, RAGE) after they are released from phagocytes. # Mono- and polysaccharides: The ability of the immune system to recognize
hyaluronan Hyaluronic acid (; abbreviated HA; conjugate base hyaluronate), also called hyaluronan, is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues. It is unique among glycosaminoglycans ...
fragments is one example of how DAMPs can be made of sugars.


Nonprotein DAMPs

*Purine metabolites: Nucleotides (e.g.,
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
) and nucleosides (e.g.,
adenosine Adenosine ( symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building ...
) that have reached the extracellular space can also serve as ''danger'' signals by signaling through
purinergic receptor Purinergic receptors, also known as purinoceptors, are a family of plasma membrane molecules that are found in almost all mammalian tissues. Within the field of purinergic signalling, these receptors have been implicated in learning and memory, lo ...
s. ATP and adenosine are released in high concentrations after catastrophic disruption of the cell, as occurs in necrotic cell death. Extracellular ATP triggers mast cell
degranulation Degranulation is a cellular process that releases antimicrobial cytotoxic or other molecules from secretory vesicles called granules found inside some cells. It is used by several different cells involved in the immune system, including granulo ...
by signaling through
P2X7 P2X purinoceptor 7 is a protein that in humans is encoded by the ''P2RX7'' gene. The product of this gene belongs to the family of purinoceptors for ATP. Multiple alternatively spliced variants which would encode different isoforms have been id ...
receptors. Similarly, adenosine triggers degranulation through
P1 receptors The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a di ...
. Uric acid is also an endogenous danger signal released by injured cells. Adenosine triphosphate (ATP) and uric acid, which are purine metabolites, activate NLR family, pyrin domain containing (NLRP) 3 inflammasomes to induce IL-1β and IL-18.


In plants

DAMPs in plants have been found to stimulate a fast immune response, but without the inflammation that characterizes DAMPs in mammals. Just as with mammalian DAMPs, plant DAMPs are cytosolic in nature and are released into the extracellular space following damage to the cell caused by either trauma or pathogen. The major difference in the immune systems between plants and mammals is that plants lack an adaptive immune system, so plants can not determine which pathogens have attacked them before and thus easily mediate an effective immune response to them. To make up for this lack of defense, plants use the pattern-triggered immunity (PTI) and
Effector-triggered immunity Effector-triggered immunity (ETI) is one of the pathways, along with the Pattern-Triggered Immunity (PTI) pathway, by which the innate immune system recognises pathogenic organisms and elicits a protective immune response. ETI is elicited when an ...
(ETI) pathways to combat trauma and pathogens. PTI is the first line of defense in plants and is triggered by
PAMPs Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. A vast arra ...
to initiate signaling throughout the plant that damage has occur to a cell. Along with the PTI, DAMPs are also released in response to this damage, but as mentioned earlier they do not initiate an inflammatory response like their mammalian counterparts. The main role of DAMPs in plants is to act as mobile signals to initiate wounding responses and to promote damage repair. A large overlap occurs between the PTI pathway and DAMPs in plants, and the plant DAMPs effectively operate as PTI amplifiers. The ETI always occurs after the PTI pathway and DAMP release, and is a last resort response to the pathogen or trauma that ultimately results in programmed cell death. The PTI- and ETI-signaling pathways are used in conjunction with DAMPs to rapidly signal the rest of the plant to activate its innate immune response and fight off the invading pathogen or mediate the healing process from damage caused by trauma. Plant DAMPs and their receptors are characterized as: Many mammalian DAMPs have DAMP counterparts in plants. One example is with the
high-mobility group High-Mobility Group or HMG is a group of chromosomal proteins that are involved in the regulation of DNA-dependent processes such as transcription, replication, recombination, and DNA repair. Families The HMG proteins are subdivided into 3 super ...
protein. Mammals have the HMGB1 protein, while ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' has the HMGB3 protein.


Clinical targets in various disorders

Preventing the release of DAMPs and blocking DAMP receptors would, in theory, stop inflammation from an injury or infection and reduce pain for the affected individual. This is especially important during surgeries, which have the potential to trigger these inflammation pathways, making the surgery more difficult and dangerous to complete. The blocking of DAMPs also has theoretical applications in therapeutics to treat disorders such as
arthritis Arthritis is a term often used to mean any disorder that affects joints. Symptoms generally include joint pain and stiffness. Other symptoms may include redness, warmth, swelling, and decreased range of motion of the affected joints. In som ...
, cancer, ischemia reperfusion, myocardial infarction, and
stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
. These theoretical therapeutic options include: *Preventing DAMP release - proapoptotic therapies, platinums,
ethyl pyruvate Ethyl pyruvate is a colorless organic compound with a molecular formula of C5H8O3. Structure Ethyl pyruvate is small molecule with both ketone and ester functionality. The molecule has no hydrogen donors, but three atoms that are hydrogen recepto ...
*Neutralizing or blocking DAMPs extracellularly - anti-HMGB1, rasburicase, sRAGE, etc. *Blocking the DAMP receptors or their signaling -
RAGE Rage may refer to: * Rage (emotion), an intense form of anger Games * Rage (collectible card game), a collectible card game * Rage (trick-taking card game), a commercial variant of the card game Oh Hell * ''Rage'' (video game), a 2011 first-per ...
small molecule antagonists, TLR4 antagonists, antibodies to DAMP-R DAMPs can be used as biomarkers for inflammatory diseases and potential therapeutic targets. For example, increased S100A8/A9 is associated with osteophyte progression in early human osteoarthritis, suggesting that S100 proteins can be used as biomarkers for the diagnosis of the progressive grade of osteoarthritis. Furthermore, DAMP can be a useful prognostic factor for cancer. This would improve patient classification, and a suitable therapy would be given to patients by diagnosing with DAMPs. The regulation of DAMP signaling can be a potential therapeutic target to reduce inflammation and treat diseases. For example, administration of neutralizing HMGB1 antibodies or truncated HMGB1-derived A-box protein ameliorated arthritis in collagen-induced arthritis rodent models. Clinical trials with HSP inhibitors have also been reported. For nonsmall-cell lung cancer, HSP27, HSP70, and HSP90 inhibitors are under investigation in clinical trials. In addition, treatment with dnaJP1, which is a synthetic peptide derived from DnaJ (HSP40), had a curative effect in rheumatoid arthritis patients without critical side effects. Taken together, DAMPs can be useful therapeutic targets for various human diseases, including cancer and autoimmune diseases. DAMPs can trigger re-epithelialization upon kidney injury', contributing to epithelial–mesenchymal transition, and potentially, to myofibroblast differentiation and proliferation. These discoveries suggest that DAMPs drive not only immune injury, but also kidney regeneration and renal scarring. For example, TLR2-agonistic DAMPs activate renal progenitor cells to regenerate epithelial defects in injured tubules. TLR4-agonistic DAMPs also induce renal dendritic cells to release IL-22, which also accelerates tubule re-epithelialization in AKI. Finally, DAMPs also promote renal fibrosis by inducing NLRP3, which also promotes TGF-β receptor signaling.


References


Further reading

* * * * *
Damage Associated Molecular Pattern Molecules Group
at University of Pittsburgh * * * {{DEFAULTSORT:Damps Immunology