A DNA polymerase is a member of a family of
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s that catalyze the synthesis of
DNA molecule
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s from
nucleoside triphosphate
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are ch ...
s, the molecular precursors of DNA. These enzymes are essential for
DNA replication
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones.
These enzymes
catalyze
Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
the
chemical reaction
A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
:
deoxynucleoside
A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid ( DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar ( monosaccharide), a n ...
triphosphate + DNA
n pyrophosphate
In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P–O–P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate (Na2H2P2O7) and tetrasodium pyrophosphate (Na4P2O7), among othe ...
+ DNA
n+1.
DNA polymerase adds nucleotides to the
three prime (3')-end of a DNA strand, one nucleotide at a time. Every time a
cell divides, DNA polymerases are required to duplicate the cell's DNA, so that a copy of the original DNA molecule can be passed to each daughter cell. In this way, genetic information is passed down from generation to generation.
Before replication can take place, an enzyme called
helicase
Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
unwinds the DNA molecule from its tightly woven form, in the process breaking the
hydrogen bond
In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
s between the
nucleotide bases
Nucleobases, also known as ''nitrogenous bases'' or often simply ''bases'', are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the bas ...
. This opens up or "unzips" the double-stranded DNA to give two single strands of DNA that can be used as templates for replication in the above reaction.
History
In 1956,
Arthur Kornberg
Arthur Kornberg (March 3, 1918 – October 26, 2007) was an American biochemist who won the Nobel Prize in Physiology or Medicine 1959 for the discovery of "the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic ac ...
and colleagues discovered
DNA polymerase I
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initi ...
(Pol I), in ''
Escherichia coli
''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
''. They described the DNA replication process by which DNA polymerase copies the base sequence of a template DNA strand. Kornberg was later awarded the
Nobel Prize in Physiology or Medicine
The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, accord ...
in 1959 for this work.
DNA polymerase II
DNA polymerase II (also known as DNA Pol II or Pol II) is a prokaryotic DNA-Dependent DNA polymerase encoded by the PolB gene.
DNA Polymerase II is an 89.9-kDa protein and is a member of the B family of DNA polymerases. It was originally isolated ...
was discovered by
Thomas Kornberg (the son of
Arthur Kornberg
Arthur Kornberg (March 3, 1918 – October 26, 2007) was an American biochemist who won the Nobel Prize in Physiology or Medicine 1959 for the discovery of "the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic ac ...
) and Malcolm E. Gefter in 1970 while further elucidating the role of Pol I in ''E. coli'' DNA replication.
Three more DNA polymerases have been found in ''E. coli'', including
DNA polymerase III
DNA polymerase III holoenzyme is the primary enzyme complex involved in prokaryotic DNA replication. It was discovered by Thomas Kornberg (son of Arthur Kornberg) and Malcolm Gefter in 1970. The complex has high processivity (i.e. the number of ...
(discovered in the 1970s) and
DNA polymerases IV and
V (discovered in 1999).
Function
The main function of DNA polymerase is to synthesize DNA from
deoxyribonucleotide
A deoxyribonucleotide is a nucleotide that contains deoxyribose. They are the monomeric units of the informational biopolymer, deoxyribonucleic acid ( DNA). Each deoxyribonucleotide comprises three parts: a deoxyribose sugar (monosaccharide), a nit ...
s, the building blocks of DNA. The DNA copies are created by the pairing of nucleotides to bases present on each strand of the original DNA molecule. This pairing always occurs in specific combinations, with
cytosine
Cytosine () ( symbol C or Cyt) is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an ...
along with
guanine
Guanine () ( symbol G or Gua) is one of the four main nucleobases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine (uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside is c ...
, and
thymine
Thymine () ( symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidi ...
along with
adenine
Adenine () ( symbol A or Ade) is a nucleobase (a purine derivative). It is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The three others are guanine, cytosine and thymine. Its derivati ...
, forming two separate pairs, respectively. By contrast,
RNA polymerase
In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template.
Using the enzyme helicase, RNAP locally opens the ...
s synthesize RNA from
ribonucleotide
In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic ...
s from either RNA or DNA.
When synthesizing new DNA, DNA polymerase can add free nucleotides only to the
3' end of the newly forming strand. This results in elongation of the newly forming strand in a 5'–3' direction.
It is important to note that the directionality of the newly forming strand (the daughter strand) is opposite to the direction in which DNA polymerase moves along the template strand. Since DNA polymerase requires a free 3' OH group for initiation of synthesis, it can synthesize in only one direction by extending the 3' end of the preexisting nucleotide chain. Hence, DNA polymerase moves along the template strand in a 3'–5' direction, and the daughter strand is formed in a 5'–3' direction. This difference enables the resultant double-strand DNA formed to be composed of two DNA strands that are
antiparallel to each other.
The function of DNA polymerase is not quite perfect, with the enzyme making about one mistake for every billion base pairs copied. Error correction is a property of some, but not all DNA polymerases. This process corrects mistakes in newly synthesized DNA. When an incorrect base pair is recognized, DNA polymerase moves backwards by one base pair of DNA. The 3'–5'
exonuclease activity of the enzyme allows the incorrect base pair to be excised (this activity is known as ''
proofreading''). Following base excision, the polymerase can re-insert the correct base and replication can continue forwards. This preserves the integrity of the original DNA strand that is passed onto the daughter cells.
Fidelity is very important in DNA replication. Mismatches in DNA base pairing can potentially result in dysfunctional
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s and could lead to cancer. Many DNA polymerases contain an exonuclease domain, which acts in detecting base pair mismatches and further performs in the removal of the incorrect nucleotide to be replaced by the correct one. The shape and the interactions accommodating the Watson and Crick base pair are what primarily contribute to the detection or error. Hydrogen bonds play a key role in base pair binding and interaction. The loss of an interaction, which occurs at a mismatch, is said to trigger a shift in the balance, for the binding of the template-primer, from the polymerase, to the exonuclease domain. In addition, an incorporation of a wrong nucleotide causes a retard in DNA polymerization. This delay gives time for the DNA to be switched from the polymerase site to the exonuclease site. Different conformational changes and loss of interaction occur at different mismatches. In a purine:pyrimidine mismatch there is a displacement of the pyrimidine towards the major groove and the purine towards the minor groove. Relative to the shape of DNA polymerase's binding pocket, steric clashes occur between the purine and residues in the minor groove, and important
van der Waals and electrostatic interactions are lost by the pyrimidine. Pyrimidine:pyrimidine and purine:purine mismatches present less notable changes since the bases are displaced towards the major groove, and less steric hindrance is experienced. However, although the different mismatches result in different steric properties, DNA polymerase is still able to detect and differentiate them so uniformly and maintain fidelity in DNA replication. DNA polymerization is also critical for many mutagenesis processes and is widely employed in biotechnologies.
Structure
The known DNA polymerases have highly conserved structure, which means that their overall catalytic
subunits vary very little from species to species, independent of their domain structures. Conserved structures usually indicate important, irreplaceable functions of the cell, the maintenance of which provides evolutionary advantages. The shape can be described as resembling a right hand with thumb, finger, and palm domains. The palm domain appears to function in catalyzing the transfer of
phosphoryl groups in the phosphoryl transfer reaction. DNA is bound to the palm when the enzyme is active. This reaction is believed to be catalyzed by a two-metal-ion mechanism. The finger domain functions to bind the
nucleoside triphosphate
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are ch ...
s with the template base. The thumb domain plays a potential role in the processivity, translocation, and positioning of the DNA.
Processivity
DNA polymerase's rapid catalysis is due to its processive nature.
Processivity
In molecular biology and biochemistry, processivity is an enzyme's ability to catalyze "consecutive reactions without releasing its substrate".
For example, processivity is the average number of nucleotides added by a polymerase enzyme, such as ...
is a characteristic of enzymes that function on polymeric substrates. In the case of DNA polymerase, the degree of processivity refers to the average number of nucleotides added each time the enzyme binds a template. The average DNA polymerase requires about one second locating and binding a primer/template junction. Once it is bound, a nonprocessive DNA polymerase adds
nucleotide
Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules wi ...
s at a rate of one nucleotide per second.
Processive DNA polymerases, however, add multiple nucleotides per second, drastically increasing the rate of DNA synthesis. The degree of processivity is directly proportional to the rate of DNA synthesis. The rate of DNA synthesis in a living cell was first determined as the rate of phage T4 DNA elongation in phage infected ''E. coli''. During the period of exponential DNA increase at 37 °C, the rate was 749 nucleotides per second.
DNA polymerase's ability to slide along the DNA template allows increased processivity. There is a dramatic increase in processivity at the
replication fork
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
. This increase is facilitated by the DNA polymerase's association with proteins known as the sliding
DNA clamp
A DNA clamp, also known as a sliding clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevent ...
. The clamps are multiple protein subunits associated in the shape of a ring. Using the
hydrolysis
Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile.
Biological hydrolys ...
of ATP, a class of proteins known as the
sliding clamp loading proteins open up the ring structure of the sliding DNA clamps allowing binding to and release from the DNA strand.
Protein–protein interaction
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and th ...
with the clamp prevents DNA polymerase from diffusing from the DNA template, thereby ensuring that the enzyme binds the same primer/template junction and continues replication.
DNA polymerase changes conformation, increasing affinity to the clamp when associated with it and decreasing affinity when it completes the replication of a stretch of DNA to allow release from the clamp.
Variation across species
Based on sequence homology, DNA polymerases can be further subdivided into seven different families: A, B, C, D, X, Y, and RT.
Some
virus
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea.
Since Dmitri Ivanovsky's 1 ...
es also encode special DNA polymerases, such as
Hepatitis B virus DNA polymerase
Hepatitis B virus DNA polymerase is a hepatitis B viral protein. It is a DNA polymerase that can use either DNA or RNA templates and a ribonuclease H that cuts RNA in the duplex. Both functions are supplied by the reverse transcriptase (RT) domai ...
. These may selectively replicate viral DNA through a variety of mechanisms.
Retroviruses encode an unusual DNA polymerase called
reverse transcriptase, which is an RNA-dependent DNA polymerase (RdDp). It polymerizes DNA from a template of
RNA
Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
.
Prokaryotic polymerase
Prokaryotic polymerases exist in two forms: core polymerase and holoenzyme. Core polymerase synthesizes DNA from the DNA template but it cannot initiate the synthesis alone or accurately. Holoenzyme accurately initiates synthesis.
Pol I
Prokaryotic family A polymerases include the
DNA polymerase I
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initi ...
(Pol I) enzyme, which is encoded by the ''polA''
gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
and ubiquitous among
prokaryotes. This repair polymerase is involved in excision repair with both 3'–5' and 5'–3' exonuclease activity and processing of
Okazaki fragment
Okazaki fragments are short sequences of DNA nucleotides (approximately 150 to 200 base pairs long in eukaryotes) which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA ...
s generated during lagging strand synthesis.
Pol I is the most abundant polymerase, accounting for >95% of polymerase activity in ''E. coli''; yet cells lacking Pol I have been found suggesting Pol I activity can be replaced by the other four polymerases. Pol I adds ~15-20 nucleotides per second, thus showing poor processivity. Instead, Pol I starts adding nucleotides at the RNA primer:template junction known as the
origin of replication
The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by se ...
(ori). Approximately 400 bp downstream from the origin, the Pol III holoenzyme is assembled and takes over replication at a highly processive speed and nature.
''Taq'' polymerase is a heat-stable enzyme of this family that lacks proofreading ability.
Pol II
DNA polymerase II
DNA polymerase II (also known as DNA Pol II or Pol II) is a prokaryotic DNA-Dependent DNA polymerase encoded by the PolB gene.
DNA Polymerase II is an 89.9-kDa protein and is a member of the B family of DNA polymerases. It was originally isolated ...
is a family B polymerase encoded by the polB gene. Pol II has 3'–5' exonuclease activity and participates in
DNA repair
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA da ...
, replication restart to bypass lesions, and its cell presence can jump from ~30-50 copies per cell to ~200–300 during SOS induction. Pol II is also thought to be a backup to Pol III as it can interact with holoenzyme proteins and assume a high level of processivity. The main role of Pol II is thought to be the ability to direct polymerase activity at the replication fork and help stalled Pol III bypass terminal mismatches.
''Pfu'' DNA polymerase is a heat-stable enzyme of this family found in the hyperthermophilic
archaeon
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebact ...
''
Pyrococcus furiosus
''Pyrococcus furiosus'' is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum growt ...
''. Detailed classification divides family B in archaea into B1, B2, B3, in which B2 is a group of
pseudoenzymes. ''Pfu'' belongs to family B3. Others PolBs found in archaea are part of "Casposons",
Cas1
CRISPR-associated protein 1 (cas1) is one of the two universally conserved proteins found in the CRISPR prokaryotic immune defense system. Cas1 is a metal-dependent DNA-specific endonuclease that produces double-stranded DNA fragments. Cas1 forms ...
-dependent transposons.
Some viruses (including
Φ29 DNA polymerase) and mitochondrial plasmids carry polB as well.
Pol III
DNA polymerase III
DNA polymerase III holoenzyme is the primary enzyme complex involved in prokaryotic DNA replication. It was discovered by Thomas Kornberg (son of Arthur Kornberg) and Malcolm Gefter in 1970. The complex has high processivity (i.e. the number of ...
holoenzyme is the primary enzyme involved in DNA replication in ''E. coli'' and belongs to family C polymerases. It consists of three assemblies: the pol III core, the beta
sliding clamp processivity factor, and the clamp-loading complex. The core consists of three subunits: α, the polymerase activity hub, ɛ, exonucleolytic proofreader, and θ, which may act as a stabilizer for ɛ. The beta sliding clamp processivity factor is also present in duplicate, one for each core, to create a clamp that encloses DNA allowing for high processivity.
The third assembly is a seven-subunit (τ2γδδχψ) clamp loader complex.
The old textbook "trombone model" depicts an elongation complex with two equivalents of the core enzyme at each replication fork (RF), one for each strand, the lagging and leading.
However, recent evidence from single-molecule studies indicates an average of three stoichiometric equivalents of core enzyme at each RF for both Pol III and its counterpart in ''B. subtilis,'' PolC. In-cell fluorescent microscopy has revealed that leading strand synthesis may not be completely continuous, and Pol III* (i.e., the holoenzyme α, ε, τ, δ and χ subunits without the ß2 sliding clamp) has a high frequency of dissociation from active RFs.
In these studies, the replication fork turnover rate was about 10s for Pol III*, 47s for the ß2 sliding clamp, and 15m for the DnaB helicase. This suggests that the DnaB helicase may remain stably associated at RFs and serve as a nucleation point for the competent holoenzyme. ''In vitro'' single-molecule studies have shown that Pol III* has a high rate of RF turnover when in excess, but remains stably associated with replication forks when concentration is limiting.
Another single-molecule study showed that DnaB helicase activity and strand elongation can proceed with decoupled, stochastic kinetics.
Pol IV
In ''E. coli'',
DNA polymerase IV (Pol IV) is an error-prone DNA polymerase involved in non-targeted mutagenesis.
Pol IV is a Family Y polymerase expressed by the ''dinB'' gene that is switched on via SOS induction caused by stalled polymerases at the replication fork. During SOS induction, Pol IV production is increased tenfold and one of the functions during this time is to interfere with Pol III holoenzyme processivity. This creates a checkpoint, stops replication, and allows time to repair DNA lesions via the appropriate repair pathway.
Another function of Pol IV is to perform
translesion synthesis
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dama ...
at the stalled replication fork like, for example, bypassing N2-deoxyguanine adducts at a faster rate than transversing undamaged DNA. Cells lacking the ''dinB'' gene have a higher rate of mutagenesis caused by DNA damaging agents.
Pol V
DNA polymerase V
DNA Polymerase V (Pol V) is a polymerase enzyme involved in DNA repair mechanisms in bacteria, such as ''Escherichia coli''. It is composed of a UmuD' Protein dimer, homodimer and a UmuC monomer, forming the UmuD'2C protein complex. It is part of ...
(Pol V) is a Y-family DNA polymerase that is involved in
SOS response
The SOS response is a global response to DNA damage in which the cell cycle is arrested and DNA repair and mutagenesis is induced. The system involves the RecA protein (Rad51 in eukaryotes). The RecA protein, stimulated by single-stranded DNA ...
and
translesion synthesis
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA dama ...
DNA repair mechanisms.
Transcription of Pol V via the ''umuDC'' genes is highly regulated to produce only Pol V when damaged DNA is present in the cell generating an SOS response. Stalled polymerases causes
RecA
RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolog ...
to bind to the ssDNA, which causes the
LexA
Repressor LexA or LexA is a transcriptional repressor () that represses SOS response genes coding primarily for error-prone DNA polymerases, DNA repair enzymes and cell division inhibitors. LexA forms ''de facto'' a two-component regulatory system ...
protein to autodigest.
LexA
Repressor LexA or LexA is a transcriptional repressor () that represses SOS response genes coding primarily for error-prone DNA polymerases, DNA repair enzymes and cell division inhibitors. LexA forms ''de facto'' a two-component regulatory system ...
then loses its ability to repress the transcription of the umuDC operon. The same RecA-ssDNA nucleoprotein posttranslationally modifies the UmuD protein into UmuD' protein. UmuD and UmuD' form a heterodimer that interacts with UmuC, which in turn activates umuC's polymerase catalytic activity on damaged DNA. In ''E. coli'', a polymerase "tool belt" model for switching pol III with pol IV at a stalled replication fork, where both polymerases bind simultaneously to the β-clamp, has been proposed.
However, the involvement of more than one TLS polymerase working in succession to bypass a lesion has not yet been shown in ''E. coli''. Moreover, Pol IV can catalyze both insertion and extension with high efficiency, whereas pol V is considered the major SOS TLS polymerase. One example is the bypass of intra strand guanine thymine cross-link where it was shown on the basis of the difference in the mutational signatures of the two polymerases, that pol IV and pol V compete for TLS of the intra-strand crosslink.
Family D
In 1998, the family D of DNA polymerase was discovered in ''
Pyrococcus furiosus
''Pyrococcus furiosus'' is a heterotrophic, strictly anaerobic, extremophilic, model species of archaea. It is classified as a hyperthermophile because it thrives best under extremely high temperatures, and is notable for having an optimum growt ...
'' and ''
Methanococcus jannaschii
''Methanocaldococcus jannaschii'' (formerly ''Methanococcus jannaschii'') is a thermophilic methanogenic archaean in the class Methanococci. It was the first archaeon to have its complete genome sequenced. The sequencing identified many genes un ...
''. The PolD complex is a heterodimer of two chains, each encoded by DP1 (small proofreading) and DP2 (large catalytic). Unlike other DNA polymerases, the structure and mechanism of the DP2 catalytic core resemble that of multi-subunit
RNA polymerase
In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template.
Using the enzyme helicase, RNAP locally opens the ...
s. The DP1-DP2 interface resembles that of Eukaryotic Class B polymerase zinc finger and its small subunit.
[ DP1, a ]Mre11
Double-strand break repair protein MRE11 is an enzyme that in humans is encoded by the ''MRE11'' gene. The gene has been designated ''MRE11A'' to distinguish it from the pseudogene ''MRE11B'' that is nowadays named ''MRE11P1''.
Function
This ge ...
-like exonuclease, is likely the precursor of small subunit of Pol α and ε, providing proofreading capabilities now lost in Eukaryotes. Its N-terminal HSH domain is similar to AAA protein
AAA, Triple A, or Triple-A is a three-letter initialism or abbreviation which may refer to:
Airports
* Anaa Airport in French Polynesia (IATA airport code AAA)
* Logan County Airport (Illinois) (FAA airport code AAA)
Arts, entertainment, and m ...
s, especially Pol III subunit δ and RuvB, in structure. DP2 has a Class II KH domain
The K Homology (KH) domain is a protein domain that was first identified in the human heterogeneous nuclear ribonucleoprotein (hnRNP) K. An evolutionarily conserved sequence of around 70 amino acids, the KH domain is present in a wide variety o ...
.[ ''Pyrococcus abyssi'' polD is more heat-stable and more accurate than ''Taq'' polymerase, but has not yet been commercialized.] It has been proposed that family D DNA polymerase was the first to evolve in cellular organisms and that the replicative polymerase of the Last Universal Cellular Ancestor (LUCA) belonged to family D.
Eukaryotic DNA polymerase
Polymerases β, λ, σ, μ (beta, lambda, sigma, mu) and TdT
Family X polymerases contain the well-known eukaryotic polymerase pol β (beta), as well as other eukaryotic polymerases such as Pol σ (sigma), Pol λ (lambda), Pol μ (mu), and Terminal deoxynucleotidyl transferase (TdT). Family X polymerases are found mainly in vertebrates, and a few are found in plants and fungi. These polymerases have highly conserved regions that include two helix-hairpin-helix motifs that are imperative in the DNA-polymerase interactions. One motif is located in the 8 kDa domain that interacts with downstream DNA and one motif is located in the thumb domain that interacts with the primer strand. Pol β, encoded by POLB gene, is required for short-patch base excision repair
Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from t ...
, a DNA repair pathway that is essential for repairing alkylated or oxidized bases as well as abasic site
In biochemistry and molecular genetics, an AP site (apurinic/apyrimidinic site), also known as an abasic site, is a location in DNA (also in RNA but much less likely) that has neither a purine nor a pyrimidine base, either spontaneously or ...
s. Pol λ and Pol μ, encoded by the POLL
Poll, polled, or polling may refer to:
Figurative head counts
* Poll, a formal election
** Election verification exit poll, a survey taken to verify election counts
** Polling, voting to make decisions or determine opinions
** Polling places o ...
and POLM genes respectively, are involved in non-homologous end-joining
Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direc ...
, a mechanism for rejoining DNA double-strand breaks due to hydrogen peroxide and ionizing radiation, respectively. TdT is expressed only in lymphoid tissue, and adds "n nucleotides" to double-strand breaks formed during V(D)J recombination
V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell re ...
to promote immunological diversity.
Polymerases α, δ and ε (alpha, delta, and epsilon)
Pol α (alpha), Pol δ (delta), and Pol ε (epsilon) are members of Family B Polymerases and are the main polymerases involved with nuclear DNA replication. Pol α complex (pol α-DNA primase complex) consists of four subunits: the catalytic subunit POLA1
DNA polymerase alpha catalytic subunit is an enzyme that in humans is encoded by the ''POLA1'' gene.
Function
This gene encodes the p180 catalytic subunit of DNA polymerase α-primase. Pol α has limited processivity and lacks 3′ exonucle ...
, the regulatory subunit POLA2
DNA polymerase alpha subunit 2 is an enzyme that in humans is encoded by the ''POLA2'' gene.
Interactions
POLA2 has been shown to interact with PARP1.
See also
* DNA Polymerase
* DNA polymerase alpha
DNA polymerase alpha also known as ''Pol ...
, and the small and the large primase subunits PRIM1
DNA primase small subunit is an enzyme that in humans is encoded by the ''PRIM1'' gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' o ...
and PRIM2
DNA primase large subunit is an enzyme that in humans is encoded by the ''PRIM2'' gene.
The replication of DNA in eukaryotic cells is carried out by a complex chromosomal replication apparatus, in which DNA polymerase alpha and primase are two k ...
respectively. Once primase has created the RNA primer, Pol α starts replication elongating the primer with ~20 nucleotides. Due to its high processivity, Pol δ takes over the leading and lagging strand synthesis from Pol α. Pol δ is expressed by genes POLD1
The gene polymerase delta 1 (''POLD1'') encodes the large, POLD1/p125, catalytic subunit of the DNA polymerase delta (Polδ) complex. The Polδ enzyme is responsible for synthesizing the lagging strand of DNA, and has also been implicated in some ...
, creating the catalytic subunit, POLD2, POLD3, and POLD4 creating the other subunits that interact with Proliferating Cell Nuclear Antigen
Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, wh ...
(PCNA), which is a DNA clamp
A DNA clamp, also known as a sliding clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevent ...
that allows Pol δ to possess processivity. Pol ε is encoded by the POLE1, the catalytic subunit, POLE2
DNA polymerase epsilon subunit 2 is an enzyme that in humans is encoded by the ''POLE2'' gene.
Interactions
POLE2 has been shown to interact with SAP18
Histone deacetylase complex subunit SAP18 is an enzyme that in humans is encoded by the ''SAP1 ...
, and POLE3
DNA polymerase epsilon subunit 3 is an enzyme that in humans is encoded by the ''POLE3'' gene.
POLE3 is a histone-fold protein that interacts with other histone-fold proteins to bind DNA in a sequence-independent manner. These histone-fold protei ...
gene. It has been reported that the function of Pol ε is to extend the leading strand during replication, while Pol δ primarily replicates the lagging strand; however, recent evidence suggested that Pol δ might have a role in replicating the leading strand of DNA as well. Pol ε's C-terminus "polymerase relic" region, despite being unnecessary for polymerase activity, is thought to be essential to cell vitality. The C-terminus region is thought to provide a checkpoint before entering anaphase, provide stability to the holoenzyme, and add proteins to the holoenzyme necessary for initiation of replication. Pol ε has a larger "palm" domain that provides high processivity independently of PCNA.
Compared to other Family B polymerases, the DEDD exonuclease family responsible for proofreading is inactivated in Pol α. Pol ε is unique in that it has two zinc finger domains and an inactive copy of another family B polymerase in its C-terminal. The presence of this zinc finger has implications in the origins of Eukaryota, which in this case is placed into the ''Asgard
In Nordic mythology, Asgard (Old Norse: ''Ásgarðr'' ; "enclosure of the Æsir") is a location associated with the gods. It appears in a multitude of Old Norse sagas and mythological texts. It is described as the fortified home of the Æsir ...
'' group with archaeal B3 polymerase.
Polymerases η, ι and κ (eta, iota, and kappa)
Pol η (eta), Pol ι (iota), and Pol κ (kappa), are Family Y DNA polymerases involved in the DNA repair by translation synthesis and encoded by genes POLH, POLI __NOTOC__
Poli can refer to:
Food
* ''Puran Poli'', a poli made up of wheat flour and puran (sweet cooked gram paste)
* A Marathi name for ''chapati'', a bread made up of wheat flour
Organisations
* FC Timişoara Romanian first league football c ...
, and POLK
Polk may refer to:
People
* James K. Polk, 11th president of the United States
* Polk (name), other people with the name
Places
* Polk (CTA), a train station in Chicago, Illinois
* Polk, Illinois, an unincorporated community
* Polk, Missou ...
respectively. Members of Family Y have five common motifs to aid in binding the substrate and primer terminus and they all include the typical right hand thumb, palm and finger domains with added domains like little finger (LF), polymerase-associated domain (PAD), or wrist. The active site, however, differs between family members due to the different lesions being repaired. Polymerases in Family Y are low-fidelity polymerases, but have been proven to do more good than harm as mutations that affect the polymerase can cause various diseases, such as skin cancer
Skin cancers are cancers that arise from the skin. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of skin cancers: basal-cell skin cancer (BCC) ...
and Xeroderma Pigmentosum Variant (XPS). The importance of these polymerases is evidenced by the fact that gene encoding DNA polymerase η is referred as XPV, because loss of this gene results in the disease Xeroderma Pigmentosum Variant. Pol η is particularly important for allowing accurate translesion synthesis of DNA damage resulting from ultraviolet radiation
Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
. The functionality of Pol κ is not completely understood, but researchers have found two probable functions. Pol κ is thought to act as an extender or an inserter of a specific base at certain DNA lesions. All three translesion synthesis polymerases, along with Rev1, are recruited to damaged lesions via stalled replicative DNA polymerases. There are two pathways of damage repair leading researchers to conclude that the chosen pathway depends on which strand contains the damage, the leading or lagging strand.
Polymerases Rev1 and ζ (zeta)
Pol ζ another B family polymerase, is made of two subunits Rev3, the catalytic subunit, and Rev7 (MAD2L2
Mitotic spindle assembly checkpoint protein MAD2B is a protein that in humans is encoded by the ''MAD2L2'' gene.
Function
MAD2L2 is a component of the mitotic spindle assembly checkpoint that prevents the onset of anaphase until all chromosomes ...
), which increases the catalytic function of the polymerase, and is involved in translesion synthesis. Pol ζ lacks 3' to 5' exonuclease activity, is unique in that it can extend primers with terminal mismatches. Rev1
DNA repair protein REV1 is a protein that in humans is encoded by the ''REV1'' gene.
This gene encodes a protein with similarity to the S. cerevisiae mutagenesis protein Rev1. The Rev1 proteins contain a BRCT domain, which is important in protei ...
has three regions of interest in the BRCT domain
BRCA1 C Terminus (BRCT) domain is a family of evolutionarily related proteins. It is named after the C-terminal domain of BRCA1, a DNA-repair protein that serves as a marker of breast cancer susceptibility.
The BRCT domain is found predominant ...
, ubiquitin-binding domain, and C-terminal domain and has dCMP transferase ability, which adds deoxycytidine opposite lesions that would stall replicative polymerases Pol δ and Pol ε. These stalled polymerases activate ubiquitin complexes that in turn disassociate replication polymerases and recruit Pol ζ and Rev1. Together Pol ζ and Rev1 add deoxycytidine and Pol ζ extends past the lesion. Through a yet undetermined process, Pol ζ disassociates and replication polymerases reassociate and continue replication. Pol ζ and Rev1 are not required for replication, but loss of REV3 gene in budding yeast can cause increased sensitivity to DNA-damaging agents due to collapse of replication forks where replication polymerases have stalled.
Telomerase
Telomerase
Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
is a ribonucleoprotein
Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins.
Structures
Nucleoproteins tend to be positively charged, facilitating int ...
which functions to replicate ends of linear chromosomes since normal DNA polymerase cannot replicate the ends, or telomeres
A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
. The single-strand 3' overhang of the double-strand chromosome with the sequence 5'-TTAGGG-3' recruits telomerase. Telomerase acts like other DNA polymerases by extending the 3' end, but, unlike other DNA polymerases, telomerase does not require a template. The TERT subunit, an example of a reverse transcriptase, uses the RNA subunit to form the primer–template junction that allows telomerase to extend the 3' end of chromosome ends. The gradual decrease in size of telomeres as the result of many replications over a lifetime are thought to be associated with the effects of aging.
Polymerases γ, θ and ν (gamma, theta and nu)
Pol γ (gamma), Pol θ (theta), and Pol ν (nu) are Family A polymerases. Pol γ, encoded by the POLG
DNA polymerase subunit gamma (POLG or POLG1) is an enzyme that in humans is encoded by the ''POLG'' gene. Mitochondrial DNA polymerase is heterotrimeric, consisting of a homodimer of accessory subunits plus a catalytic subunit. The protein encoded ...
gene, was long thought to be the only mitochondrial polymerase. However, recent research shows that at least Pol β (beta), a Family X polymerase, is also present in mitochondria. Any mutation that leads to limited or non-functioning Pol γ has a significant effect on mtDNA and is the most common cause of autosomal inherited mitochondrial disorders. Pol γ contains a C-terminus polymerase domain and an N-terminus 3'–5' exonuclease domain that are connected via the linker region, which binds the accessory subunit. The accessory subunit binds DNA and is required for processivity of Pol γ. Point mutation A467T in the linker region is responsible for more than one-third of all Pol γ-associated mitochondrial disorders. While many homologs of Pol θ, encoded by the POLQ
DNA polymerase theta is an enzyme that in humans is encoded by the ''POLQ'' gene. This polymerase plays a key role in one of the three major double strand break repair pathways: theta-mediated end joining (TMEJ). Most double-strand breaks are repai ...
gene, are found in eukaryotes, its function is not clearly understood. The sequence of amino acids in the C-terminus is what classifies Pol θ as Family A polymerase, although the error rate for Pol θ is more closely related to Family Y polymerases. Pol θ extends mismatched primer termini and can bypass abasic sites by adding a nucleotide. It also has Deoxyribophosphodiesterase (dRPase) activity in the polymerase domain and can show ATPase activity in close proximity to ssDNA. Pol ν (nu) is considered to be the least effective of the polymerase enzymes. However, DNA polymerase nu plays an active role in homology repair during cellular responses to crosslinks, fulfilling its role in a complex with helicase
Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separatin ...
.
Plants use two Family A polymerases to copy both the mitochondrial and plastid genomes. They are more similar to bacterial Pol I than they are to mammalian Pol γ.
Reverse transcriptase
Retroviruses encode an unusual DNA polymerase called reverse transcriptase, which is an RNA-dependent DNA polymerase (RdDp) that synthesizes DNA from a template of RNA. The reverse transcriptase family contain both DNA polymerase functionality and RNase H functionality, which degrades RNA base-paired to DNA. An example of a retrovirus is HIV
The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
. Reverse transcriptase is commonly employed in amplification of RNA for research purposes. Using an RNA template, PCR can utilize reverse transcriptase, creating a DNA template. This new DNA template can then be used for typical PCR amplification. The products of such an experiment are thus amplified PCR products from RNA.
Each HIV retrovirus particle contains two RNA
Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
genome
In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
s, but, after an infection, each virus generates only one provirus. After infection, reverse transcription is accompanied by template switching between the two genome copies (copy choice recombination).[ From 5 to 14 recombination events per genome occur at each replication cycle. Template switching (recombination) appears to be necessary for maintaining genome integrity and as a repair mechanism for salvaging damaged genomes.][
]
Bacteriophage T4 DNA polymerase
Bacteriophage (phage) T4 encodes a DNA polymerase that catalyzes DNA synthesis in a 5' to 3' direction. The phage polymerase also has an exonuclease activity that acts in a 3' to 5' direction, and this activity is employed in the proofreading and editing of newly inserted bases. A phage mutant with a temperature sensitive DNA polymerase, when grown at permissive temperatures, was observed to undergo recombination at frequencies that are about two-fold higher than that of wild-type phage.
It was proposed that a mutational alteration in the phage DNA polymerase can stimulate template strand switching (copy choice recombination) during replication.[
]
See also
* Biological machines
*DNA sequencing
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
*Enzyme catalysis
Enzyme catalysis is the increase in the reaction rate, rate of a process by a Biomolecule, biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs ...
* Genetic recombination
*Molecular cloning
Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their DNA replication, replication within Host (biology), host organisms. The use of the word ''cloning'' re ...
*Polymerase chain reaction
The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies (complete or partial) of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it (or a part of it) t ...
* Protein domain dynamics
* Reverse transcription
*RNA polymerase
In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template.
Using the enzyme helicase, RNAP locally opens the ...
*Taq DNA polymerase
''Taq'' polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism ''Thermus aquaticus,'' from which it was originally isolated by Chien et al. in 1976. Its name is often abbreviated to ''Taq'' or ''Ta ...
References
Further reading
*
External links
*
*
Unusual repair mechanism in DNA polymerase lambda
Ohio State University
The Ohio State University, commonly called Ohio State or OSU, is a public land-grant research university in Columbus, Ohio. A member of the University System of Ohio, it has been ranked by major institutional rankings among the best publ ...
, July 25, 2006.
A great animation of DNA Polymerase from WEHI at 1:45 minutes in
3D macromolecular structures of DNA polymerase from the EM Data Bank(EMDB)
{{Portal bar, Biology, border=no
EC 2.7.7
DNA replication
DNA
Enzymes