DNA Genealogy
   HOME

TheInfoList



OR:

Population genetics is a subfield of genetics that deals with genetic differences within and between populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as
adaptation In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the po ...
,
speciation Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
, and population structure. Population genetics was a vital ingredient in the
emergence In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
of the
modern evolutionary synthesis Modern synthesis or modern evolutionary synthesis refers to several perspectives on evolutionary biology, namely: * Modern synthesis (20th century), the term coined by Julian Huxley in 1942 to denote the synthesis between Mendelian genetics and s ...
. Its primary founders were Sewall Wright,
J. B. S. Haldane John Burdon Sanderson Haldane (; 5 November 18921 December 1964), nicknamed "Jack" or "JBS", was a British-Indian scientist who worked in physiology, genetics, evolutionary biology, and mathematics. With innovative use of statistics in biolog ...
and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics. Traditionally a highly mathematical discipline, modern population genetics encompasses theoretical, laboratory, and field work. Population genetic models are used both for
statistical inference Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution, distribution of probability.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical ...
from DNA sequence data and for proof/disproof of concept. What sets population genetics apart from newer, more phenotypic approaches to modelling evolution, such as evolutionary game theory and
adaptive dynamics Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of Phenotypic trait, traits in Asexual reproduction, asexually reprodu ...
, is its emphasis on such genetic phenomena as dominance,
epistasis Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dep ...
, the degree to which
genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryo ...
breaks linkage disequilibrium, and the random phenomena of mutation and genetic drift. This makes it appropriate for comparison to population genomics data.


History

Population genetics began as a reconciliation of Mendelian inheritance and
biostatistics Biostatistics (also known as biometry) are the development and application of statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experime ...
models. Natural selection will only cause evolution if there is enough
genetic variation Genetic variation is the difference in DNA among individuals or the differences between populations. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources of genetic variation, ...
in a population. Before the discovery of Mendelian genetics, one common hypothesis was blending inheritance. But with blending inheritance, genetic variance would be rapidly lost, making evolution by natural or sexual selection implausible. The Hardy–Weinberg principle provides the solution to how variation is maintained in a population with Mendelian inheritance. According to this principle, the frequencies of alleles (variations in a gene) will remain constant in the absence of selection, mutation, migration and genetic drift. The next key step was the work of the British biologist and statistician Ronald Fisher. In a series of papers starting in 1918 and culminating in his 1930 book '' The Genetical Theory of Natural Selection'', Fisher showed that the continuous variation measured by the biometricians could be produced by the combined action of many discrete genes, and that natural selection could change allele frequencies in a population, resulting in evolution. In a series of papers beginning in 1924, another British geneticist,
J. B. S. Haldane John Burdon Sanderson Haldane (; 5 November 18921 December 1964), nicknamed "Jack" or "JBS", was a British-Indian scientist who worked in physiology, genetics, evolutionary biology, and mathematics. With innovative use of statistics in biolog ...
, worked out the mathematics of allele frequency change at a single gene locus under a broad range of conditions. Haldane also applied statistical analysis to real-world examples of natural selection, such as
peppered moth evolution The evolution of the peppered moth is an evolutionary instance of directional colour change in the moth population as a consequence of air pollution during the Industrial Revolution. The frequency of dark-coloured moths increased at that time ...
and industrial melanism, and showed that selection coefficients could be larger than Fisher assumed, leading to more rapid adaptive evolution as a camouflage strategy following increased pollution. The American biologist Sewall Wright, who had a background in animal breeding experiments, focused on combinations of interacting genes, and the effects of inbreeding on small, relatively isolated populations that exhibited genetic drift. In 1932 Wright introduced the concept of an adaptive landscape and argued that genetic drift and inbreeding could drive a small, isolated sub-population away from an adaptive peak, allowing natural selection to drive it towards different adaptive peaks. The work of Fisher, Haldane and Wright founded the discipline of population genetics. This integrated natural selection with Mendelian genetics, which was the critical first step in developing a unified theory of how evolution worked. John Maynard Smith was Haldane's pupil, whilst W. D. Hamilton was influenced by the writings of Fisher. The American
George R. Price George Robert Price (October 6, 1922 – January 6, 1975) was an American population geneticist. Price is often noted for his formulation of the Price equation in 1967. Originally a physical chemist and later a science journalist, he moved ...
worked with both Hamilton and Maynard Smith. American Richard Lewontin and Japanese Motoo Kimura were influenced by Wright and Haldane.


Modern synthesis

The mathematics of population genetics were originally developed as the beginning of the modern synthesis. Authors such as Beatty have asserted that population genetics defines the core of the modern synthesis. For the first few decades of the 20th century, most field naturalists continued to believe that Lamarckism and
orthogenesis Orthogenesis, also known as orthogenetic evolution, progressive evolution, evolutionary progress, or progressionism, is an obsolete biological hypothesis that organisms have an innate tendency to evolve in a definite direction towards some go ...
provided the best explanation for the complexity they observed in the living world. During the modern synthesis, these ideas were purged, and only evolutionary causes that could be expressed in the mathematical framework of population genetics were retained. Consensus was reached as to which evolutionary factors might influence evolution, but not as to the relative importance of the various factors. Theodosius Dobzhansky, a postdoctoral worker in
T. H. Morgan Thomas Hunt Morgan (September 25, 1866 – December 4, 1945) was an American evolutionary biologist, geneticist, embryologist, and science author who won the Nobel Prize in Physiology or Medicine in 1933 for discoveries elucidating the role tha ...
's lab, had been influenced by the work on
genetic diversity Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is dis ...
by Russian geneticists such as
Sergei Chetverikov Sergei Sergeevich Chetverikov (russian: Серге́й Серге́евич Четверико́в; 6 May 1880 – 2 July 1959) was a Russian biologist and one of the early contributors to the development of the field of genetics. His research show ...
. He helped to bridge the divide between the foundations of microevolution developed by the population geneticists and the patterns of macroevolution observed by field biologists, with his 1937 book '' Genetics and the Origin of Species''. Dobzhansky examined the genetic diversity of wild populations and showed that, contrary to the assumptions of the population geneticists, these populations had large amounts of genetic diversity, with marked differences between sub-populations. The book also took the highly mathematical work of the population geneticists and put it into a more accessible form. Many more biologists were influenced by population genetics via Dobzhansky than were able to read the highly mathematical works in the original. In Great Britain
E. B. Ford Edmund Brisco "Henry" Ford (23 April 1901 – 2 January 1988) was a British ecological genetics, ecological geneticist. He was a leader among those British biologists who investigated the role of natural selection in nature. As a schoolboy Ford ...
, the pioneer of
ecological genetics Ecological genetics is the study of genetics in natural populations. Traits in a population can be observed and quantified to represent a species adapting to a changing environment. This contrasts with classical genetics, which works mostly on ...
, continued throughout the 1930s and 1940s to empirically demonstrate the power of selection due to ecological factors including the ability to maintain genetic diversity through genetic polymorphisms such as human
blood type A blood type (also known as a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrate ...
s. Ford's work, in collaboration with Fisher, contributed to a shift in emphasis during the modern synthesis towards natural selection as the dominant force.


Neutral theory and origin-fixation dynamics

The original, modern synthesis view of population genetics assumes that mutations provide ample raw material, and focuses only on the change in frequency of alleles within populations. The main processes influencing allele frequencies are natural selection, genetic drift,
gene flow In population genetics, gene flow (also known as gene migration or geneflow and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent a ...
and recurrent mutation. Fisher and Wright had some fundamental disagreements about the relative roles of selection and drift. The availability of molecular data on all genetic differences led to the
neutral theory of molecular evolution The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The ...
. In this view, many mutations are deleterious and so never observed, and most of the remainder are neutral, i.e. are not under selection. With the fate of each neutral mutation left to chance (genetic drift), the direction of evolutionary change is driven by which mutations occur, and so cannot be captured by models of change in the frequency of (existing) alleles alone. The origin-fixation view of population genetics generalizes this approach beyond strictly neutral mutations, and sees the rate at which a particular change happens as the product of the mutation rate and the fixation probability.


Four processes


Selection

Natural selection, which includes sexual selection, is the fact that some traits make it more likely for an organism to survive and reproduce. Population genetics describes natural selection by defining fitness as a propensity or probability of survival and reproduction in a particular environment. The fitness is normally given by the symbol w=1-s where s is the selection coefficient. Natural selection acts on phenotypes, so population genetic models assume relatively simple relationships to predict the phenotype and hence fitness from the allele at one or a small number of loci. In this way, natural selection converts differences in the fitness of individuals with different phenotypes into changes in allele frequency in a population over successive generations. Before the advent of population genetics, many biologists doubted that small differences in fitness were sufficient to make a large difference to evolution. Population geneticists addressed this concern in part by comparing selection to genetic drift. Selection can overcome genetic drift when s is greater than 1 divided by the effective population size. When this criterion is met, the probability that a new advantageous mutant becomes
fixed Fixed may refer to: * ''Fixed'' (EP), EP by Nine Inch Nails * ''Fixed'', an upcoming 2D adult animated film directed by Genndy Tartakovsky * Fixed (typeface), a collection of monospace bitmap fonts that is distributed with the X Window System * ...
is approximately equal to 2s. The time until fixation of such an allele depends little on genetic drift, and is approximately proportional to log(sN)/s.


Dominance

Dominance means that the phenotypic and/or fitness effect of one allele at a locus depends on which allele is present in the second copy for that locus. Consider three genotypes at one locus, with the following fitness values s is the selection coefficient and h is the dominance coefficient. The value of h yields the following information:


Epistasis

Epistasis Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dep ...
means that the phenotypic and/or fitness effect of an allele at one locus depends on which alleles are present at other loci. Selection does not act on a single locus, but on a phenotype that arises through development from a complete genotype. However, many population genetics models of sexual species are "single locus" models, where the fitness of an individual is calculated as the product of the contributions from each of its loci—effectively assuming no epistasis. In fact, the genotype to fitness landscape is more complex. Population genetics must either model this complexity in detail, or capture it by some simpler average rule. Empirically, beneficial mutations tend to have a smaller fitness benefit when added to a genetic background that already has high fitness: this is known as diminishing returns epistasis. When deleterious mutations also have a smaller fitness effect on high fitness backgrounds, this is known as "synergistic epistasis". However, the effect of deleterious mutations tends on average to be very close to multiplicative, or can even show the opposite pattern, known as "antagonistic epistasis". Synergistic epistasis is central to some theories of the purging of
mutation load Genetic load is the difference between the fitness of an average genotype in a population and the fitness of some reference genotype, which may be either the best present in a population, or may be the theoretically optimal genotype. The average i ...
and to the evolution of sexual reproduction.


Mutation

Mutation is the ultimate source of
genetic variation Genetic variation is the difference in DNA among individuals or the differences between populations. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources of genetic variation, ...
in the form of new alleles. In addition, mutation may influence the direction of evolution when there is mutation bias, i.e. different probabilities for different mutations to occur. For example, recurrent mutation that tends to be in the opposite direction to selection can lead to
mutation–selection balance Mutation–selection balance is an equilibrium in the number of deleterious alleles in a population that occurs when the rate at which deleterious alleles are created by mutation equals the rate at which deleterious alleles are eliminated by select ...
. At the molecular level, if mutation from G to A happens more often than mutation from A to G, then genotypes with A will tend to evolve. Different insertion vs. deletion mutation biases in different taxa can lead to the evolution of different genome sizes. Developmental or mutational biases have also been observed in morphological evolution. For example, according to the phenotype-first theory of evolution, mutations can eventually cause the
genetic assimilation Genetic assimilation is a process described by Conrad H. Waddington by which a phenotype originally produced in response to an environmental condition, such as exposure to a teratogen, later becomes genetically encoded via artificial selection ...
of traits that were previously induced by the environment. Mutation bias effects are superimposed on other processes. If selection would favor either one out of two mutations, but there is no extra advantage to having both, then the mutation that occurs the most frequently is the one that is most likely to become fixed in a population. Mutation can have no effect, alter the product of a gene, or prevent the gene from functioning. Studies in the fly '' Drosophila melanogaster'' suggest that if a mutation changes a protein produced by a gene, this will probably be harmful, with about 70 percent of these mutations having damaging effects, and the remainder being either neutral or weakly beneficial. Most loss of function mutations are selected against. But when selection is weak, mutation bias towards loss of function can affect evolution. For example, pigments are no longer useful when animals live in the darkness of caves, and tend to be lost. This kind of loss of function can occur because of mutation bias, and/or because the function had a cost, and once the benefit of the function disappeared, natural selection leads to the loss. Loss of sporulation ability in a bacterium during laboratory evolution appears to have been caused by mutation bias, rather than natural selection against the cost of maintaining sporulation ability. When there is no selection for loss of function, the speed at which loss evolves depends more on the mutation rate than it does on the effective population size, indicating that it is driven more by mutation bias than by genetic drift. Mutations can involve large sections of DNA becoming duplicated, usually through
genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryo ...
. This leads to copy-number variation within a population. Duplications are a major source of raw material for evolving new genes. Other types of mutation occasionally create new genes from previously noncoding DNA.


Genetic drift

''Genetic drift'' is a change in allele frequencies caused by random sampling. That is, the alleles in the offspring are a random sample of those in the parents. Genetic drift may cause gene variants to disappear completely, and thereby reduce genetic variability. In contrast to natural selection, which makes gene variants more common or less common depending on their reproductive success, the changes due to genetic drift are not driven by environmental or adaptive pressures, and are equally likely to make an allele more common as less common. The effect of genetic drift is larger for alleles present in few copies than when an allele is present in many copies. The population genetics of genetic drift are described using either branching processes or a
diffusion equation The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles (see Fick's la ...
describing changes in allele frequency. These approaches are usually applied to the Wright-Fisher and
Moran Moran may refer to: Places Antarctica * Moran Bluff, Marie Byrd Land * Moran Buttress, Marie Byrd Land * Moran Glacier, Alexander Island Asia * Moran Town, Assam, India * Moran, Israel, a kibbutz * Moran Hill, North Korea * Moran Station, a s ...
models of population genetics. Assuming genetic drift is the only evolutionary force acting on an allele, after t generations in many replicated populations, starting with allele frequencies of p and q, the variance in allele frequency across those populations is : V_t \approx pq\left(1-\exp\left\\right). Ronald Fisher held the view that genetic drift plays at the most a minor role in evolution, and this remained the dominant view for several decades. No population genetics perspective have ever given genetic drift a central role by itself, but some have made genetic drift important in combination with another non-selective force. The shifting balance theory of Sewall Wright held that the combination of population structure and genetic drift was important. Motoo Kimura's
neutral theory of molecular evolution The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The ...
claims that most genetic differences within and between populations are caused by the combination of neutral mutations and genetic drift. The role of genetic drift by means of sampling error in evolution has been criticized by
John H Gillespie John H. Gillespie is an evolutionary biologist interested in theoretical population genetics and molecular evolution. In molecular evolution, he emphasized the importance of advantageous mutations and balancing selection. For that reason, Gillespi ...
and
Will Provine William Ball Provine (February 19, 1942 – September 1, 2015) was an American historian of science and of evolutionary biology and population genetics. He was the Andrew H. and James S. Tisch Distinguished University Professor at Cornell Universit ...
, who argue that selection on linked sites is a more important stochastic force, doing the work traditionally ascribed to genetic drift by means of sampling error. The mathematical properties of genetic draft are different from those of genetic drift. The direction of the random change in allele frequency is autocorrelated across generations.


Gene flow

Because of physical barriers to migration, along with the limited tendency for individuals to move or spread (
vagility Motility is the ability of an organism to move independently, using metabolic energy. Definitions Motility, the ability of an organism to move independently, using metabolic energy, can be contrasted with sessility, the state of organisms th ...
), and tendency to remain or come back to natal place ( philopatry), natural populations rarely all interbreed as may be assumed in theoretical random models (
panmixy Panmixia (or panmixis) means random mating. A panmictic population is one where all individuals are potential partners. This assumes that there are no mating restrictions, neither genetic nor behavioural, upon the population and that therefore all ...
). There is usually a geographic range within which individuals are more closely
related ''Related'' is an American comedy-drama television series that aired on The WB from October 5, 2005, to March 20, 2006. It revolves around the lives of four close-knit sisters of Italian descent, raised in Brooklyn and living in Manhattan. The ...
to one another than those randomly selected from the general population. This is described as the extent to which a population is genetically structured. Genetic structuring can be caused by migration due to historical climate change, species
range expansion Colonisation or colonization is the process in biology by which a species spreads to new areas. Colonisation often refers to ''successful'' immigration where a population becomes integrated into an ecological community, having resisted initial ...
or current availability of habitat. Gene flow is hindered by mountain ranges, oceans and deserts or even man-made structures such as the Great Wall of China, which has hindered the flow of plant genes.
Gene flow In population genetics, gene flow (also known as gene migration or geneflow and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent a ...
is the exchange of genes between populations or species, breaking down the structure. Examples of gene flow within a species include the migration and then breeding of organisms, or the exchange of
pollen Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametophyt ...
. Gene transfer between species includes the formation of
hybrid Hybrid may refer to: Science * Hybrid (biology), an offspring resulting from cross-breeding ** Hybrid grape, grape varieties produced by cross-breeding two ''Vitis'' species ** Hybridity, the property of a hybrid plant which is a union of two dif ...
organisms and horizontal gene transfer. Population genetic models can be used to identify which populations show significant genetic isolation from one another, and to reconstruct their history. Subjecting a population to isolation leads to inbreeding depression. Migration into a population can introduce new genetic variants, potentially contributing to
evolutionary rescue Evolutionary rescue is a process by which a population—that would have gone extinct in the absence of evolution—persists due to natural selection acting on heritable variation. The term was first used in 1995 by Gomulkiewicz and Holt in the co ...
. If a significant proportion of individuals or gametes migrate, it can also change allele frequencies, e.g. giving rise to migration load. In the presence of gene flow, other barriers to hybridization between two diverging populations of an outcrossing species are required for the populations to become new species.


Horizontal gene transfer

Horizontal gene transfer is the transfer of genetic material from one organism to another organism that is not its offspring; this is most common among prokaryotes. In medicine, this contributes to the spread of
antibiotic resistance Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. ...
, as when one bacteria acquires resistance genes it can rapidly transfer them to other species. Horizontal transfer of genes from bacteria to eukaryotes such as the yeast '' Saccharomyces cerevisiae'' and the adzuki bean beetle ''
Callosobruchus chinensis ''Callosobruchus chinensis'' is a common species of beetle found in the bean weevil subfamily, and is known to be a pest to many stored legumes. Although it is commonly known as the adzuki bean weevil it is in fact not a true weevil, belonging ins ...
'' may also have occurred. An example of larger-scale transfers are the eukaryotic
bdelloid rotifers Bdelloidea (Greek ''βδέλλα'', ''bdella'', "leech") is a class of rotifers found in freshwater habitats all over the world. There are over 450 described species of bdelloid rotifers (or 'bdelloids'), distinguished from each other mainl ...
, which appear to have received a range of genes from bacteria, fungi, and plants. Viruses can also carry DNA between organisms, allowing transfer of genes even across biological domains. Large-scale gene transfer has also occurred between the ancestors of eukaryotic cells and prokaryotes, during the acquisition of
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s and
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
.


Linkage

If all genes are in
linkage equilibrium In population genetics, linkage disequilibrium (LD) is the non-random association of alleles at different loci in a given population. Loci are said to be in linkage disequilibrium when the frequency of association of their different alleles is h ...
, the effect of an allele at one locus can be averaged across the
gene pool The gene pool is the set of all genes, or genetic information, in any population, usually of a particular species. Description A large gene pool indicates extensive genetic diversity, which is associated with robust populations that can surv ...
at other loci. In reality, one allele is frequently found in linkage disequilibrium with genes at other loci, especially with genes located nearby on the same chromosome. Recombination breaks up this linkage disequilibrium too slowly to avoid
genetic hitchhiking Genetic may refer to: *Genetics, in biology, the science of genes, heredity, and the variation of organisms **Genetic, used as an adjective, refers to genes ***Genetic disorder, any disorder caused by a genetic mutation, whether inherited or de nov ...
, where an allele at one locus rises to high frequency because it is linked to an allele under selection at a nearby locus. Linkage also slows down the rate of adaptation, even in sexual populations. The effect of linkage disequilibrium in slowing down the rate of adaptive evolution arises from a combination of the
Hill–Robertson effect In population genetics, the Hill–Robertson effect, or Hill–Robertson interference, is a phenomenon first identified by Bill Hill and Alan Robertson in 1966. It provides an explanation as to why there may be an evolutionary advantage to genet ...
(delays in bringing beneficial mutations together) and
background selection Background may refer to: Performing arts and stagecraft * Background actor * Background artist * Background light * Background music * Background story * Background vocals * ''Background'' (play), a 1950 play by Warren Chetham-Strode Rec ...
(delays in separating beneficial mutations from deleterious
hitchhikers Hitchhiking (also known as thumbing, autostop or hitching) is a means of transportation that is gained by asking individuals, usually strangers, for a ride in their car or other vehicle. The ride is usually, but not always, free. Nomads have ...
). Linkage is a problem for population genetic models that treat one gene locus at a time. It can, however, be exploited as a method for detecting the action of natural selection via selective sweeps. In the extreme case of an asexual population, linkage is complete, and population genetic equations can be derived and solved in terms of a travelling wave of genotype frequencies along a simple fitness landscape. Most microbes, such as bacteria, are asexual. The population genetics of their
adaptation In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the po ...
have two contrasting regimes. When the product of the beneficial mutation rate and population size is small, asexual populations follow a "successional regime" of origin-fixation dynamics, with adaptation rate strongly dependent on this product. When the product is much larger, asexual populations follow a "concurrent mutations" regime with adaptation rate less dependent on the product, characterized by clonal interference and the appearance of a new beneficial mutation before the last one has
fixed Fixed may refer to: * ''Fixed'' (EP), EP by Nine Inch Nails * ''Fixed'', an upcoming 2D adult animated film directed by Genndy Tartakovsky * Fixed (typeface), a collection of monospace bitmap fonts that is distributed with the X Window System * ...
.


Applications


Explaining levels of genetic variation

Neutral theory Neutral theory may refer to one of these two related theories: * Neutral theory of molecular evolution * Unified neutral theory of biodiversity The unified neutral theory of biodiversity and biogeography (here "Unified Theory" or "UNTB") is a t ...
predicts that the level of nucleotide diversity in a population will be proportional to the product of the population size and the neutral mutation rate. The fact that levels of genetic diversity vary much less than population sizes do is known as the "paradox of variation". While high levels of genetic diversity were one of the original arguments in favor of neutral theory, the paradox of variation has been one of the strongest arguments against neutral theory. It is clear that levels of genetic diversity vary greatly within a species as a function of local recombination rate, due to both
genetic hitchhiking Genetic may refer to: *Genetics, in biology, the science of genes, heredity, and the variation of organisms **Genetic, used as an adjective, refers to genes ***Genetic disorder, any disorder caused by a genetic mutation, whether inherited or de nov ...
and
background selection Background may refer to: Performing arts and stagecraft * Background actor * Background artist * Background light * Background music * Background story * Background vocals * ''Background'' (play), a 1950 play by Warren Chetham-Strode Rec ...
. Most current solutions to the paradox of variation invoke some level of selection at linked sites. For example, one analysis suggests that larger populations have more selective sweeps, which remove more neutral genetic diversity. A negative correlation between mutation rate and population size may also contribute. Life history affects genetic diversity more than population history does, e.g.
r-strategists In ecology, ''r''/''K'' selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individ ...
have more genetic diversity.


Detecting selection

Population genetics models are used to infer which genes are undergoing selection. One common approach is to look for regions of high linkage disequilibrium and low genetic variance along the chromosome, to detect recent selective sweeps. A second common approach is the McDonald–Kreitman test which compares the amount of variation within a species (
polymorphism Polymorphism, polymorphic, polymorph, polymorphous, or polymorphy may refer to: Computing * Polymorphism (computer science), the ability in programming to present the same programming interface for differing underlying forms * Ad hoc polymorphis ...
) to the divergence between species (substitutions) at two types of sites; one assumed to be neutral. Typically,
synonymous A synonym is a word, morpheme, or phrase that means exactly or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all ...
sites are assumed to be neutral. Genes undergoing positive selection have an excess of divergent sites relative to polymorphic sites. The test can also be used to obtain a genome-wide estimate of the proportion of substitutions that are fixed by positive selection, α. According to the
neutral theory of molecular evolution The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The ...
, this number should be near zero. High numbers have therefore been interpreted as a genome-wide falsification of neutral theory.


Demographic inference

The simplest test for population structure in a sexually reproducing, diploid species, is to see whether genotype frequencies follow Hardy-Weinberg proportions as a function of allele frequencies. For example, in the simplest case of a single locus with two alleles denoted A and a at frequencies ''p'' and ''q'', random mating predicts freq(AA) = ''p''2 for the AA homozygotes, freq(aa) = ''q''2 for the aa homozygotes, and freq(Aa) = 2''pq'' for the heterozygotes. In the absence of population structure, Hardy-Weinberg proportions are reached within 1-2 generations of random mating. More typically, there is an excess of homozygotes, indicative of population structure. The extent of this excess can be quantified as the inbreeding coefficient, F. Individuals can be clustered into ''K'' subpopulations. The degree of population structure can then be calculated using FST, which is a measure of the proportion of genetic variance that can be explained by population structure. Genetic population structure can then be related to geographic structure, and genetic admixture can be detected.
Coalescent theory Coalescent theory is a model of how alleles sampled from a population may have originated from a common ancestor. In the simplest case, coalescent theory assumes no recombination, no natural selection, and no gene flow or population structure, m ...
relates genetic diversity in a sample to demographic history of the population from which it was taken. It normally assumes
neutrality Neutral or neutrality may refer to: Mathematics and natural science Biology * Neutral organisms, in ecology, those that obey the unified neutral theory of biodiversity Chemistry and physics * Neutralization (chemistry), a chemical reaction ...
, and so sequences from more neutrally-evolving portions of genomes are therefore selected for such analyses. It can be used to infer the relationships between species ( phylogenetics), as well as the population structure, demographic history (e.g.
population bottlenecks A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as specicide, widespread violen ...
,
population growth Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. The global population has grown from 1 billion in 1800 to ...
),
biological dispersal Biological dispersal refers to both the movement of individuals (animals, plants, fungi, bacteria, etc.) from their birth site to their breeding site ('natal dispersal'), as well as the movement from one breeding site to another ('breeding dis ...
, source–sink dynamics and
introgression Introgression, also known as introgressive hybridization, in genetics is the transfer of genetic material from one species into the gene pool of another by the repeated backcrossing of an interspecific hybrid with one of its parent species. Intr ...
within a species. Another approach to demographic inference relies on the
allele frequency spectrum In population genetics, the allele frequency spectrum, sometimes called the site frequency spectrum, is the distribution of the allele frequencies of a given set of loci (often SNPs) in a population or sample. Because an allele frequency spectrum ...
.


Evolution of genetic systems

By assuming that there are loci that control the genetic system itself, population genetic models are created to describe the evolution of dominance and other forms of
robustness Robustness is the property of being strong and healthy in constitution. When it is transposed into a system, it refers to the ability of tolerating perturbations that might affect the system’s functional body. In the same line ''robustness'' ca ...
, the evolution of sexual reproduction and recombination rates, the evolution of mutation rates, the evolution of evolutionary capacitors, the evolution of costly signalling traits, the evolution of ageing, and the evolution of
co-operation Cooperation (written as co-operation in British English) is the process of groups of organisms working or acting together for common, mutual, or some underlying benefit, as opposed to working in competition for selfish benefit. Many animal a ...
. For example, most mutations are deleterious, so the optimal mutation rate for a species may be a trade-off between the damage from a high deleterious mutation rate and the
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
costs of maintaining systems to reduce the mutation rate, such as DNA repair enzymes. One important aspect of such models is that selection is only strong enough to purge deleterious mutations and hence overpower mutational bias towards degradation if the selection coefficient s is greater than the inverse of the effective population size. This is known as the drift barrier and is related to the
nearly neutral theory of molecular evolution The nearly neutral theory of molecular evolution is a modification of the neutral theory of molecular evolution that accounts for the fact that not all mutations are either so deleterious such that they can be ignored, or else neutral. Slightly del ...
. Drift barrier theory predicts that species with large effective population sizes will have highly streamlined, efficient genetic systems, while those with small population sizes will have bloated and complex genomes containing for example
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene. ...
s and transposable elements. However, somewhat paradoxically, species with large population sizes might be so tolerant to the consequences of certain types of errors that they evolve higher error rates, e.g. in
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
and translation, than small populations.


See also


References


External links


Population Genetics Tutorials

Molecular population genetics

The ALlele FREquency Database
at Yale University
EHSTRAFD.org - Earth Human STR Allele Frequencies Database

History of population genetics

How Selection Changes the Genetic Composition of Population
video of lecture by
Stephen C. Stearns Stephen C. Stearns (born December 12, 1946, in Kapaau, Hawaii and raised in Hawi, Hawaii) is an American biologist, and the Edward P. Bass Professor of Ecology and Evolutionary Biology Emeritus at Yale University. He is known for his work in lif ...
( Yale University) *
National Geographic ''National Geographic'' (formerly the ''National Geographic Magazine'', sometimes branded as NAT GEO) is a popular American monthly magazine published by National Geographic Partners. Known for its photojournalism, it is one of the most widely ...

Atlas of the Human Journey
( Haplogroup-based human migration maps) {{DEFAULTSORT:Population Genetics Population genetics Evolutionary biology Statistical genetics