Crustal Recycling
   HOME

TheInfoList



OR:

Crustal recycling is a
tectonic Tectonics (; ) are the processes that control the structure and properties of the Earth's crust and its evolution through time. These include the processes of mountain building, the growth and behavior of the strong, old cores of continents ...
process by which surface material from the
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
is recycled into the mantle by
subduction erosion Tectonic erosion or subduction erosion is the loss of crust from an overriding tectonic plate due to subduction. Two types of tectonic erosion exist: frontal erosion at the outer margin of a plate and basal erosion at the base of the plate's cru ...
or
delamination Delamination is a mode of failure where a material fractures into layers. A variety of materials including laminate composites and concrete can fail by delamination. Processing can create layers in materials such as steel formed by rolling a ...
. The subducting slabs carry volatile compounds and water into the mantle, as well as crustal material with an isotopic signature different from that of primitive mantle. Identification of this crustal signature in mantle-derived rocks (such as
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverge ...
basalts or
kimberlite Kimberlite is an igneous rock and a rare variant of peridotite. It is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an diamond called the Star of ...
s) is proof of crustal recycling.


Historical and theoretical context

Between 1906 and 1936 seismological data were used by R.D. Oldham, A. Mohorovičić, B. Gutenberg and I. Lehmann to show that the earth consisted of a solid crust and mantle, a fluid outer core and a solid innermost core. The development of seismology as a modern tool for imaging the Earth's deep interior occurred during the 1980s, and with it developed two camps of geologists: whole-mantle convection proponents and layered-mantle convection proponents. Layered-mantle convection proponents hold that the mantle's convective activity is layered, separated by densest-packing phase transitions of minerals like
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
,
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different s ...
and
pyroxene The pyroxenes (commonly abbreviated to ''Px'') are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents calcium (Ca), sodium (Na), iron (Fe II) ...
to more dense crystal structures (
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , which means ''spine'' in reference to its pointed crystals. Properties S ...
and then
silicate perovskite Silicate perovskite is either (the magnesium end-member is called bridgmanite) or ( calcium silicate known as davemaoite) when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and mainly exist in the l ...
and
post-perovskite Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur ...
). Slabs that are subducted may be negatively buoyant as a result of being cold from their time on the surface and inundation with water, but this negative buoyancy is not enough to move through the 660-km phase transition. Whole-mantle (simple) convection proponents hold that the mantle’s observed density differences (which are inferred to be products of mineral phase transitions) do not restrict convective motion, which moves through the upper and lower mantle as a single convective cell. Subducting slabs are able to move through the 660-km phase transition and collect near the bottom of the mantle in a 'slab graveyard', and may be the driving force for convection in the mantle locally and on a crustal scale.


The fate of subducted material

The ultimate fate of crustal material is key to understanding geochemical cycling, as well as persistent heterogeneities in the mantle, upwelling and myriad effects on magma composition, melting, plate tectonics, mantle dynamics and heat flow. If slabs are stalled out at the 660-km boundary, as the layered-mantle hypothesis suggests, they cannot be incorporated into hot spot plumes, thought to originate at the core-mantle boundary. If slabs end up in a "slab graveyard" at the core-mantle boundary, they cannot be involved in flat slab subduction geometry. Mantle dynamics is likely a mix of the two end-member hypotheses, resulting in a partially layered mantle convection system. Our current understanding of the structure of the deep Earth is informed mostly by inference from direct and indirect measurements of mantle properties using
seismology Seismology (; from Ancient Greek σεισμός (''seismós'') meaning "earthquake" and -λογία (''-logía'') meaning "study of") is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other ...
,
petrology Petrology () is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together ...
,
isotope geochemistry Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope ratio mass spectrometry, and can reveal ...
and seismic tomography techniques. Seismology in particular is heavily relied upon for information about the deep mantle near the core-mantle boundary.


Evidence


Seismic tomography

Although seismic tomography was producing low-quality images of the Earth's mantle in the 1980s, images published in a 1997 editorial article in the journal ''
Science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for ...
'' clearly showed a cool slab near the core-mantle boundary, as did work completed in 2005 by Hutko et al., showing a seismic tomography image that may be cold, folded slab material at the core-mantle boundary. However, the phase transitions may still play a role in the behavior of slabs at depth. Schellart et al. showed that the 660-km phase transition may serve to deflect downgoing slabs. The shape of the subduction zone was also key in whether the geometry of the slab could overcome the phase transition boundary. Mineralogy may also play a role, as locally metastable olivine will form areas of positive buoyancy, even in a cold downgoing slab, and this could cause slabs to 'stall out' at the increased density of the 660-km phase transition. Slab mineralogy and its evolution at depth were not initially computed with information about the heating rate of a slab, which could prove essential to helping maintain negative buoyancy long enough to pierce the 660 km phase change. Additional work completed by Spasojevic et al. showed that local minima in the geoid could be accounted for by the processes that occur in and around slab graveyards, as indicated in their models.


Stable isotopes

Understanding that the differences between Earth's layers are not just
rheological Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appli ...
, but chemical, is essential to understanding how we can track the movement of crustal material even after it has been subducted. After a rock has moved to the surface of the earth from beneath the crust, that rock can be sampled for its stable isotopic composition. It can then be compared to known crustal and mantle isotopic compositions, as well as that of
chondrite A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primi ...
s, which are understood to represent original material from the formation of the solar system in a largely unaltered state. One group of researchers was able to estimate that between 5 and 10% of the
upper mantle The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about under the oceans and about under the continents) and ends at the top of the lower mantle at . Temperatures range from appr ...
is composed of recycled crustal material. Kokfelt et al. completed an isotopic examination of the mantle plume under Iceland and found that erupted mantle lavas incorporated lower crustal components, confirming crustal recycling at the local level. Some
carbonatite Carbonatite () is a type of intrusive or extrusive igneous rock defined by mineralogic composition consisting of greater than 50% carbonate minerals. Carbonatites may be confused with marble and may require geochemical verification. Carbonati ...
units, which are associated with immiscible volatile-rich magmas and the mantle indicator mineral
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the Chemical stability, chemically stable form of car ...
, have shown isotopic signals for organic carbon, which could only have been introduced by subducted organic material. The work done on carbonatites by Walter et al. and others further develops the magmas at depth as being derived from dewatering slab material.


References

{{Reflist Plate tectonics