Critical load
   HOME

TheInfoList



OR:

In the study of
air pollution Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different types ...
, a critical load is defined as "a quantitative estimate of an exposure to one or more
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oi ...
s below which significant harmful effects on specified sensitive elements of the
environment Environment most often refers to: __NOTOC__ * Natural environment, all living and non-living things occurring naturally * Biophysical environment, the physical and biological factors along with their chemical interactions that affect an organism or ...
do not occur according to present knowledge". Air pollution research in relation to critical loads has focused on
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
pollutants. After these pollutants are emitted into the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, they are subsequently deposited into
ecosystems An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
. Both sulfur and nitrogen deposition can acidify surface waters and
soils Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former term ...
. As added
acidity In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
lowers the pH of water, fish and invertebrate health are negatively impacted.Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J.-J. B. Dubois, C. L. Goodale, A. T. Herlihy, G. B. Lawrence, L. Liu, J. A. Lynch, and K. J. Novak. 2012. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and the Environment 10:365-372. Sulfur and nitrogen, as acidifying agents, may change soil nutrient content by removing calcium and releasing toxic aluminum, further impacting plants and animals. Nitrogen deposition can also act as a
fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
in the environment and alter the competitive interactions of plants, thereby favoring the growth of some plant species and inhibiting others, potentially leading to changes in
species composition Species richness is the number of different species represented in an community (ecology), ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the Abundance (ecology), abunda ...
and
abundance Abundance may refer to: In science and technology * Abundance (economics), the opposite of scarcities * Abundance (ecology), the relative representation of a species in a community * Abundance (programming language), a Forth-like computer prog ...
. The deposition of nitrogen contributes to nutrient enrichment in freshwater, coastal, and
estuarine An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environment ...
ecosystems, which may cause toxic algal blooms, fish kills, and
loss of biodiversity Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, de ...
.Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J.-W. Erisman, M. Fenn, F. Gilliam, A. Nordin, L. Pardo, and W. De Vries. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20:30-59.Pardo, L. H., M. E. Fenn, C. L. Goodale, L. H. Geiser, C. T. Driscoll, E. B. Allen, J. S. Baron, R. Bobbink, W. D. Bowman, C. M. Clark, B. Emmett, F. S. Gilliam, T. L. Greaver, S. J. Hall, E. A. Lilleskov, L. Liu, J. A. Lynch, K. J. Nadelhoffer, S. S. Perakis, M. J. Robin-Abbott, J. L. Stoddard, K. C. Weathers, and R. L. Dennis. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications 21:3049-3082. Air pollutants impact essential
ecosystem services Ecosystem services are the many and varied benefits to humans provided by the natural environment and healthy ecosystems. Such ecosystems include, for example, agroecosystems, forest ecosystem, grassland ecosystems, and aquatic ecosystems. Th ...
such as air and water purification, decomposition and detoxification of waste materials, and climate regulation. When deposition is greater than the critical load of a pollutant for a particular location, it is considered a critical load exceedance, meaning the biota are at increased risk of ecological harm. Some components of an ecosystem are more sensitive to deposition than others; therefore, critical loads can be developed for a variety of ecosystem components and responses, including (but not limited to) shifts in diatoms, increases in invasive grass species, changes in soil chemistry, decreased forest health, altered and reduced biodiversity, and lake and stream acidification. The history, terminology, and approach used to calculate critical loads differ by region and country. The differences between approaches used by European countries and in the U.S. are discussed below.


Europe

In European countries, critical loads and the similar concept of critical levels have been used extensively within the 1979 UN-ECE
Convention on Long-Range Transboundary Air Pollution The Convention on Long-Range Transboundary Air Pollution, often abbreviated as Air Convention or CLRTAP, is intended to protect the human environment against air pollution and to gradually reduce and prevent air pollution, including long-range ...
. As an example the 1999 Gothenburg protocol to the LRTAP convention takes into account
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
ification (of surface waters and
soils Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former term ...
),
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytopla ...
of soils and ground-level
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
and the emissions of
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
,
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
,
nitrogen oxide Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds: Charge-neutral *Nitric oxide (NO), nitrogen(II) oxide, or nitrogen monoxide *Nitrogen dioxide (), nitrogen(IV) oxide * Nitrogen trioxide (), or n ...
and
non-methane volatile organic compound Non-methane volatile organic compounds (NMVOCs) are a set of organic compounds that are typically photochemically reactive in the atmosphere—marked by the exclusion of methane. NMVOCs include a large variety of chemically different compounds, suc ...
s (NMVOCs). For acidification and eutrophication the critical loads concept was used, whereas for
ground-level ozone Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with cl ...
the critical levels were used instead. To calculate a critical load, the target
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
must first be defined and in that ecosystem (e.g. a
forest A forest is an area of land dominated by trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological function. The United Nations' ...
) a sensitive "element" must be identified (e.g. forest growth rate). The next step is to link the status of that element to some chemical criterion (e.g. the base
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
to
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
ratio, Bc/Al) and a critical limit (e.g. Bc/Al=1) which should not be violated. Finally, a mathematical model (e.g. the Simple Mass Balance model, SMB) needs to be created so that the deposition levels that result in the chemical criterion reaching exactly the critical limit can be calculated. That deposition level is called the critical load and the difference between the current deposition level and the critical load is called exceedance. In the early days, critical loads were often calculated as a single value, e.g. critical load of acidity. Today a two-dimensional critical load function is often calculated, with the
x-axis A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
as N-deposition and the y-axis as S-deposition. The critical loads concept is a
steady-state In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p'' ...
concept and that it therefore includes no information whatsoever regarding how long it takes before effects are visible. A simplified illustration of dynamic aspects is the target load function, which is the load at which the chemical criterion recovers before a chosen year, the target year. Thus, for target years in the near future the target load function is lower than the critical load and for target years in the distant future the target load function approaches the critical load function. Calculating critical load functions and target load functions include several simplifications and thus can be viewed as a risk concept: The higher the exceedance the higher the risk for adverse effects and there is a certain risk that zero exceedance will still lead to adverse effects.


United States

In the U.S., while various entities were discussing critical loads prior to 2000, efforts were independent and disjointed. However, in 2010, following a series of critical loads workshops from 2003 to 2005 and an ad hoc committee established in 2006, national efforts were unified through the development of the Critical Loads of Atmospheric Deposition
CLAD
Science Committee as part of the National Atmospheric Deposition Program
NADP
. CLAD is a multi-agency group consisting of federal and state government agencies, non-governmental organizations, environmental research organizations, and universities. The goals of CLAD are to: facilitate sharing of technical information on critical loads topics within a broad multi-agency/entity audience, fill gaps in critical loads development in the U.S., provide consistency in development and use of critical loads in the U.S., and promote understanding of critical loads approaches through development of outreach and communications materials. Federal Land Managers, such as th
National Park ServiceU.S. Forest Service
an

use critical loads to: identify resources at risk, focus research and monitoring efforts, inform planning and other land management activities, evaluate potential impacts of emission increases, and develop pollution reduction strategies. Th
U.S. Environmental Protection Agency
is expanding use of critical loads for assessments and policy development, including consideration of critical loads when settin
National Ambient Air Quality Standards
The U.S. has adopted two approaches for creating critical loads: empirical and steady-state mass balance critical loads. Empirical critical loads are derived based on observations of ecosystem responses (such as changes in plant diversity, soil nutrient levels, or fish health) to specific deposition levels. These relationships are created using dose-response studies or by measuring ecosystem responses to increasing gradients of deposition over space or time. Steady-state mass balance critical loads are derived from mathematical mass-balance models under assumed or modeled equilibrium conditions. A steady-state condition may be achieved far into the future. The models used to determine steady-state critical loads vary in complexity with regard to process representation but can include water and soil chemistry, mineral soil weathering rates, deposition data, and ecological response data.


Asia

In Asia, both empirical and steady-state mass balance approaches have been used to estimate critical loads.Liu, X.J., L. Duan, J.M. Mo, E.Z. Du, J.L. Shen, X.K. Lu, Y. Zhang, X.B. Zhou, C.E. He, and F.S. Zhang. 2011. Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution 159:2251-2264.Duan, L., Q. Yu, Q. Zhang, Z. Wang, Y. Pan, T. Larssen, J. Tang, and J. Mulder. 2016. Acid deposition in Asia: emissions, deposition, and ecosystem effects. Atmospheric Environment 146:55-69. Empirical critical loads were simply determined as the deposition levels with reported field occurrence of detrimental ecological effects. The steady-state mass balance model calculates the critical load of an ecosystem over the long-term by defining acceptable values for elements leaching out of the ecosystem. Although empirical nitrogen critical loads have been well summarized for Europe and the United States, large uncertainties still exist in Asia due to very limited and short-term experimental studies by using relatively high levels of nitrogen application. In regions (e.g., eastern and southern China) where historical nitrogen deposition has already been very high and perhaps even higher than the actual critical load, experimental studies may fail to quantify the critical loads because substantial ecosystem changes had already occurred. Moreover, the values of the critical loads can vary remarkably when based on different biological or chemical response of an ecosystem, such as physiological variation, reduced biodiversity, elevated nitrate leaching, and changes in soil microorganisms. Empirical critical loads have been assessed for some forests and grasslands in China, but the values for many other ecosystems remain unassessed. With more emerging field experiments, critical loads will be better estimated in the near future. In South and East Asia, comprising China, Korea, Japan, the Philippines, Indo-China, Indonesia, and the Indian subcontinent, critical loads were first computed and mapped as part of the impact module of the Asian version of the Regional Air pollution INformation and Simulation model (RAINS-Asia) based on the steady-state mass balance approach.Hettelingh, J.P., H. Sverdrup, and D. Zhao. 1995. Deriving critical loads for Asia. Water, Air, and Soil Pollution 85(4):2565-2570. Thereafter, critical loads with higher resolution were calculated in many Asian countries such as Japan, Russia, South Korea, India, and China. Although similar methods were applied in Asia as in Europe, the steady state mass balance approach has been improved by considering base cation deposition. Steady-state mass balance critical loads have been used to designate Acid Rain Control Zones and Sulphur Dioxide Pollution Control Zones in China. In the near future, critical loads will be more widely applied to guide emission abatement strategies.


References


External links

* http://www.mnp.nl/cce/ * http://nadp.slh.wisc.edu/committees/clad/ Air pollution no:Naturens tålegrense