HOME

TheInfoList



OR:

The Cowan–Reines neutrino experiment was conducted by
Washington University in St. Louis Washington University in St. Louis (WashU or WUSTL) is a private research university with its main campus in St. Louis County, and Clayton, Missouri. Founded in 1853, the university is named after George Washington. Washington University is r ...
alumnus Clyde L. Cowan and
Stevens Institute of Technology Stevens Institute of Technology is a private research university in Hoboken, New Jersey. Founded in 1870, it is one of the oldest technological universities in the United States and was the first college in America solely dedicated to mechanical ...
and
New York University New York University (NYU) is a private research university in New York City. Chartered in 1831 by the New York State Legislature, NYU was founded by a group of New Yorkers led by then- Secretary of the Treasury Albert Gallatin. In 1832, th ...
alumnus
Frederick Reines Frederick Reines ( ; March 16, 1918 – August 26, 1998) was an American physicist. He was awarded the 1995 Nobel Prize in Physics for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment. He may be the only scientist i ...
in 1956. The experiment confirmed the existence of
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s. Neutrinos, subatomic particles with no
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
and very small mass, had been conjectured to be an essential particle in
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
processes in the 1930s. With neither mass nor charge, such particles appeared to be impossible to detect. The experiment exploited a huge flux of (then hypothetical) electron
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
s emanating from a nearby nuclear reactor and a detector consisting of large tanks of water. Neutrino interactions with the protons of the water were observed, verifying the existence and basic properties of this particle for the first time.


Background

During the 1910s and 1920s, the observations of electrons from the nuclear
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
showed that their energy had a continuous distribution. If the process involved only the atomic nucleus and the electron, the electron's energy would have a single, narrow peak, rather than a continuous energy spectrum. Only the resulting electron was observed, so its varying energy suggested that energy may not be conserved. This quandary and other factors led
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics ...
to attempt to resolve the issue by postulating the existence of the neutrino in 1930. If the fundamental principle of energy conservation was to be preserved, beta decay had to be a three-body, rather than a two-body, decay. Therefore, in addition to an electron, Pauli suggested that another particle was emitted from the atomic nucleus in beta decay. This particle, the neutrino, had very small mass and no electric charge; it was not observed, but it carried the missing energy. Pauli's suggestion was developed into a proposed theory for beta decay by Enrico Fermi in 1933. The theory posits that the beta decay process consists of four fermions directly interacting with one another. By this interaction, the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
decays directly to an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
, the conjectured
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
(later determined to be an
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
) and a proton. The theory, which proved to be remarkably successful, relied on the existence of the hypothetical neutrino. Fermi first submitted his "tentative" theory of beta decay to the journal ''
Nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
'', which rejected it "because it contained speculations too remote from reality to be of interest to the reader." One problem with the neutrino conjecture and Fermi's theory was that the neutrino appeared to have such weak interactions with other matter that it would never be observed. In a 1934 paper,
Rudolf Peierls Sir Rudolf Ernst Peierls, (; ; 5 June 1907 – 19 September 1995) was a German-born British physicist who played a major role in Tube Alloys, Britain's nuclear weapon programme, as well as the subsequent Manhattan Project, the combined Allie ...
and
Hans Bethe Hans Albrecht Bethe (; July 2, 1906 – March 6, 2005) was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel ...
calculated that neutrinos could easily pass through the Earth without interactions with any matter.


Potential for experiment

By
inverse beta decay Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in ...
, the predicted neutrino, more correctly an
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
(\bar_e), should interact with a proton () to produce a
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
() and positron (e^+), :\bar_e + p \to n + e^+ The chance of this reaction occurring was small. The probability for any given reaction to occur is in proportion to its
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
. Cowan and Reines predicted a cross section for the reaction to be about . The usual unit for a cross section in nuclear physics is a
barn A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain.Alle ...
, which is and 20 orders of magnitudes larger. Despite the low probability of the neutrino interaction, the signatures of the interaction are unique, making detection of the rare interactions possible. The positron, the
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
counterpart of the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
, quickly interacts with any nearby
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
, and they annihilate each other. The two resulting coincident
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s () are detectable. The neutron can be detected by its capture by an appropriate nucleus, releasing a third gamma ray. The coincidence of the positron annihilation and neutron capture events gives a unique signature of an antineutrino interaction. A water molecule is composed of an oxygen and two hydrogen atoms, and most of the hydrogen atoms of water have a single proton for a nucleus. Those protons can serve as targets for antineutrinos, so that simple water can serve as a primary detecting material. The hydrogen atoms are so weakly bound in water that they can be viewed as free protons for the neutrino interaction. The interaction mechanism of neutrinos with heavier nuclei, those with several protons and neutrons, is more complicated, since the constituent protons are strongly bound within the nuclei.


Setup

Given the small chance of interaction of a single neutrino with a proton, neutrinos could only be observed using a huge neutrino flux. Beginning in 1951, Cowan and Reines, both then scientists at
Los Alamos, New Mexico Los Alamos is an census-designated place in Los Alamos County, New Mexico, United States, that is recognized as the development and creation place of the atomic bomb—the primary objective of the Manhattan Project by Los Alamos National Labo ...
, initially thought that neutrino bursts from the atomic weapons tests that were then occurring could provide the required flux. They eventually used a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
as a source of neutrinos, as advised by Los Alamos physics division leader J.M.B. Kellogg. The reactor had a neutrino flux of neutrinos per second per square centimeter, far higher than any flux attainable from other
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
sources. A detector consisting of two tanks of water was employed, offering a huge number of potential targets in the protons of the water. At those rare instances when neutrinos interacted with
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
in the water,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s and positrons were created. The two gamma rays created by positron annihilation were detected by sandwiching the water tanks between tanks filled with liquid scintillator. The scintillator material gives off flashes of light in response to the gamma rays, and these light flashes are detected by
photomultiplier A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for sh ...
tubes. The additional detection of the neutron from the neutrino interaction provided a second layer of certainty. Cowan and Reines detected the neutrons by dissolving cadmium chloride, CdCl2, in the tank.
Cadmium Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
is a highly effective neutron absorber and gives off a gamma ray when it absorbs a neutron. : + → → + The arrangement was such that after a neutrino interaction event, the two gamma rays from the positron annihilation would be detected, followed by the gamma ray from the neutron absorption by cadmium several
microsecond A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available. A microsecond is equal to 1000 ...
s later. The experiment that Cowan and Reines devised used two tanks with a total of about 200 liters of water with about 40 kg of dissolved CdCl2. The water tanks were sandwiched between three scintillator layers which contained 110 five-inch (127 mm)
photomultiplier A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for sh ...
tubes.


Results

A preliminary experiment was performed in 1953 at the
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. The site has been known by many names, including SiteW a ...
in
Washington state Washington (), officially the State of Washington, is a state in the Pacific Northwest region of the Western United States. Named for George Washington—the first U.S. president—the state was formed from the western part of the Washington ...
, but in late 1955 the experiment moved to the Savannah River Plant near
Aiken, South Carolina Aiken is the largest city in, and the county seat of, Aiken County, in western South Carolina. It is one of the two largest cities of the Central Savannah River Area. Founded in 1835, Aiken was named after William Aiken, the president of the S ...
. The Savannah River site had better shielding against
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our ow ...
. This shielded location was 11 m from the reactor and 12 m underground. After months of data collection, the accumulated data showed about three neutrino interactions per hour in the detector. To be absolutely sure that they were seeing
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
events from the detection scheme described above, Cowan and Reines shut down the reactor to show that there was a difference in the rate of detected events. They had predicted a cross-section for the reaction to be about and their measured cross-section was . The results were published in the July 20, 1956 issue of
Science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
.
This source reproduces the 1956 paper.


Legacy

Clyde Cowan died in 1974 at the age of 54. In 1995,
Frederick Reines Frederick Reines ( ; March 16, 1918 – August 26, 1998) was an American physicist. He was awarded the 1995 Nobel Prize in Physics for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment. He may be the only scientist i ...
was honored with the
Nobel Prize The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfr ...
for his work on
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
. The basic strategy of employing massive
detectors A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
, often water based, for neutrino research was exploited by several subsequent experiments, including the Irvine–Michigan–Brookhaven detector,
Kamiokande The is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experim ...
, the
Sudbury Neutrino Observatory The Sudbury Neutrino Observatory (SNO) was a neutrino observatory located 2100 m underground in Vale's Creighton Mine in Sudbury, Ontario, Canada. The detector was designed to detect solar neutrinos through their interactions with a large ...
and the Homestake Experiment. The Homestake Experiment is a contemporary experiment which detected
neutrinos A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
from nuclear fusion in the solar core. Observatories such as these detected neutrino bursts from supernova
SN 1987A SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova. 1987A's light reached Earth on ...
in 1987, the birth of
neutrino astronomy Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, nuclear reactions such as those that take ...
. Through observations of
solar neutrinos A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment. Neutrinos are elementary particles with extremely smal ...
, the Sudbury Neutrino Observatory was able to demonstrate the process of neutrino oscillation. Neutrino oscillation shows that neutrinos are not massless, a profound development in particle physics.


See also

* List of neutrino experiments * Subatomic particles


References


External links


Cowan and Reines Neutrino Experiment







Cowan & Reines Experiments: Poltergeist, Hanford, Savannah River

The Neutrino with Dr. Clyde L. Cowan (Lecture on Nobel Prize winning experiment)
{{DEFAULTSORT:Cowan-Reines neutrino experiment Particle experiments