Category Of Preordered Sets
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
Ord has preordered sets as
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
and
order-preserving function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of orde ...
s as
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s. This is a category because the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
of two order-preserving functions is order preserving and the identity map is order preserving. The
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
s in Ord are the
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
order-preserving functions. The
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
(considered as a preordered set) is the
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
of Ord, and the
terminal objects In category theory, a branch of mathematics, an initial object of a category (mathematics), category is an object in such that for every object in , there exists precisely one morphism . The dual (category theory), dual notion is that of a t ...
are precisely the
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
preordered sets. There are thus no
zero object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
s in Ord. The categorical
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
in Ord is given by the
product order In mathematics, given two preordered sets A and B, the product order (also called the coordinatewise orderDavey & Priestley, '' Introduction to Lattices and Order'' (Second Edition), 2002, p. 18 or componentwise order) is a partial ordering ...
on the
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
. We have a
forgetful functor In mathematics, in the area of category theory, a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given sign ...
Ord →
Set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
that assigns to each preordered set the underlying
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
, and to each order-preserving function the underlying
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
. This functor is faithful, and therefore Ord is a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects of ...
. This functor has a left
adjoint In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoin ...
(sending every set to that set equipped with the equality relation) and a right adjoint (sending every set to that set equipped with the total relation).


2-category structure

The set of morphisms (order-preserving functions) between two preorders actually has more structure than that of a set. It can be made into a preordered set itself by the pointwise relation: : (''f'' ≤ ''g'') ⇔ (∀''x'' ''f''(''x'') ≤ ''g''(''x'')) This preordered set can in turn be considered as a category, which makes Ord a
2-category In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of catego ...
(the additional axioms of a 2-category trivially hold because any equation of parallel morphisms is true in a
posetal category In mathematics, specifically category theory, a posetal category, or thin category, is a category whose homsets each contain at most one morphism. As such, a posetal category amounts to a preordered class (or a preordered set, if its objects for ...
). With this 2-category structure, a pseudofunctor F from a category ''C'' to Ord is given by the same data as a 2-functor, but has the relaxed properties: : ∀''x'' ∈ F(''A''), F(''id''''A'')(''x'') ≃ ''x'', : ∀''x'' ∈ F(''A''), F(''g''∘''f'')(''x'') ≃ F(''g'')(F(''f'')(''x'')), where ''x'' ≃ ''y'' means ''x'' ≤ ''y'' and ''y'' ≤ ''x''.


See also

*
FinOrd In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are ...
*
Simplex category In mathematics, the simplex category (or simplicial category or nonempty finite ordinal category) is the category of non-empty finite ordinals and order-preserving maps. It is used to define simplicial and cosimplicial objects. Formal definition ...
{{DEFAULTSORT:Category Of Preordered Sets Preordered sets