Cytochalasins are
fungal
A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from th ...
metabolites
In biochemistry, a metabolite is an intermediate or end product of metabolism.
The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, c ...
that have the ability to bind to
actin
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over ...
filaments and block
polymerization
In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer, monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are ...
and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change
cell
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
ular morphology, inhibit cellular processes such as
cell division
Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
, and even cause cells to undergo
apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
.
Cytochalasins have the ability to permeate cell membranes, prevent cellular translocation and cause cells to enucleate.
Cytochalasins can also have an effect on other aspects of biological processes unrelated to actin polymerization. For example,
cytochalasin A Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
and
cytochalasin B
Cytochalasin B, the name of which comes from the Greek ''cytos'' (cell) and ''chalasis'' (relaxation), is a cell-permeable mycotoxin. It was found that substoichimetric concentrations of cytochalasin B (CB) strongly inhibit network formation by act ...
can also inhibit the transport of monosaccharides across the cell membrane,
[ ]cytochalasin H Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
has been found to regulate plant growth, cytochalasin D
Cytochalasin D is a member of the class of mycotoxins known as cytochalasins. Cytochalasin D is an alkaloid produced by Helminthosporium and other molds.
Cytochalasin D is a cell-permeable and potent inhibitor of actin polymerization. It disrupts ...
inhibits protein synthesis and cytochalasin E
Cytochalasin E, a member of the cytochalasin group, is an inhibitor of actin polymerization in blood platelets. It inhibits angiogenesis and tumor growth. Unlike cytochalasin A and cytochalasin B, it does not inhibit glucose transport. Cytochalas ...
prevents angiogenesis.
Binding to actin filaments
Cytochalasins are known to bind to the barbed, fast growing plus ends of microfilaments
Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other pr ...
, which then blocks both the assembly and disassembly of individual actin monomers from the bound end. Once bound, cytochalasins essentially cap the end of the new actin filament. One cytochalasin will bind to one actin filament.[ Studies done with ]cytochalasin D
Cytochalasin D is a member of the class of mycotoxins known as cytochalasins. Cytochalasin D is an alkaloid produced by Helminthosporium and other molds.
Cytochalasin D is a cell-permeable and potent inhibitor of actin polymerization. It disrupts ...
(CD) have found that CD-actin dimers contain ATP-bound actin upon formation. These CD-actin dimers are reduced to CD-actin monomers as a result of ATP hydrolysis. The resulting CD-actin monomer can bind ATP-actin monomer to reform the CD-actin dimer.[ CD is very effective; only low concentrations (0.2 μM) are needed to prevent membrane ruffling and disrupt ]treadmilling
In molecular biology, treadmilling is a phenomenon observed within protein filaments of the cytoskeletons of many cells, especially in actin filaments and microtubules. It occurs when one end of a filament grows in length while the other end shri ...
. The effects of many different cytochalasins on actin filaments were analyzed and higher concentrations (2-20 μM) of CD were found to be needed to remove stress fibers.[
In contrast, ]latrunculin
The latrunculins are a family of natural products and toxins produced by certain sponges, including genus '' Latrunculia'' and '' Negombata'', whence the name is derived. It binds actin monomers near the nucleotide binding cleft with 1:1 stoichiom ...
inhibits actin filament polymerization by binding to actin monomers.
Uses and applications of cytochalasins
Actin microfilaments have been widely studied using cytochalasins. Due to their chemical nature, cytochalasins can help researchers understand the importance of actin in various biological processes. The use of cytochalasins has allowed researchers to better understand actin polymerization, cell motility, ruffling, cell division, contraction, and cell stiffness. The use of cytochalasins has been so important to understanding cytoskeletal movement and many other biological processes, researchers have created two synthetic cytochalasins.[
Cytochalasin has found practical application in ]thromboelastometry
Thromboelastometry (TEM), previously named rotational thromboelastography (ROTEG) or rotational thromboelastometry (ROTEM), is an established viscoelasticity, viscoelastic method for hemostasis testing in whole blood. It is a modification of trad ...
(TEM) whole blood assays for the assessment of fibrinogen
Fibrinogen (factor I) is a glycoprotein complex, produced in the liver, that circulates in the blood of all vertebrates. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood clo ...
and fibrin polymerization disorders in the FIBTEM assay on ROTEM. This test is based on the principle that cytochalasin D
Cytochalasin D is a member of the class of mycotoxins known as cytochalasins. Cytochalasin D is an alkaloid produced by Helminthosporium and other molds.
Cytochalasin D is a cell-permeable and potent inhibitor of actin polymerization. It disrupts ...
very effectively inhibits platelet
Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby ini ...
function by inhibition of the contractile elements. The platelet inhibition is more effective than when platelets are blocked by GPIIb/IIIa
In medicine, glycoprotein IIb/IIIa (GPIIb/IIIa, also known as integrin αIIbβ3) is an integrin complex found on platelets. It is a receptor for fibrinogen and von Willebrand factor and aids platelet activation. The complex is formed via calcium ...
antagonists
An antagonist is a character in a story who is presented as the chief foe of the protagonist.
Etymology
The English word antagonist comes from the Greek ἀνταγωνιστής – ''antagonistēs'', "opponent, competitor, villain, enemy, riv ...
. In vitro and clinical data indicate that the clot strength in FIBTEM increases in a fibrinogen
Fibrinogen (factor I) is a glycoprotein complex, produced in the liver, that circulates in the blood of all vertebrates. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood clo ...
concentration-dependent manner independent of platelet count. Therefore, fibrinogen deficiency or fibrin polymerization disorders can be rapidly detected.
Chemical structures
File:Cytochalasin A.png, Cytochalasin A Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
File:Cytochalasin B.png, Cytochalasin B
Cytochalasin B, the name of which comes from the Greek ''cytos'' (cell) and ''chalasis'' (relaxation), is a cell-permeable mycotoxin. It was found that substoichimetric concentrations of cytochalasin B (CB) strongly inhibit network formation by act ...
File:Cytochalasin C.png, Cytochalasin C Cytochalasins are fungal
A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a ki ...
File:Cytochalasin D.png, Cytochalasin D
Cytochalasin D is a member of the class of mycotoxins known as cytochalasins. Cytochalasin D is an alkaloid produced by Helminthosporium and other molds.
Cytochalasin D is a cell-permeable and potent inhibitor of actin polymerization. It disrupts ...
File:Cytochalasin E.png, Cytochalasin E
Cytochalasin E, a member of the cytochalasin group, is an inhibitor of actin polymerization in blood platelets. It inhibits angiogenesis and tumor growth. Unlike cytochalasin A and cytochalasin B, it does not inhibit glucose transport. Cytochalas ...
File:Cytochalasin F.png, Cytochalasin F Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
File:Cytochalasin H.png, Cytochalasin H Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
File:Cytochalasin J.png, Cytochalasin J Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit ...
See also
*Cytoskeletal drugs
Cytoskeletal drugs are small molecules that interact with actin or tubulin. These drugs can act on the cytoskeletal components within a cell in three main ways. Some cytoskeletal drugs stabilize a component of the cytoskeleton, such as taxol, which ...
References
{{Toxins
Mycotoxins
Actin inhibitors