Cryptoregiochemistry
   HOME

TheInfoList



OR:

Cryptoregiochemistry refers to the site of initial
oxidative Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
attack in
double bond In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
formation by
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
such as
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, fr ...
desaturase A fatty acid desaturase is an enzyme that removes two hydrogen atoms from a fatty acid, creating a carbon/carbon double bond. These desaturases are classified as: * Delta - indicating that the double bond is created at a fixed position from the ...
s. This is a mechanistic parameter that is usually determined through the use of
kinetic isotope effect In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for th ...
experiments, based on the premise that the initial C-H
bond cleavage In chemistry, bond cleavage, or bond fission, is the splitting of chemical bonds. This can be generally referred to as dissociation when a molecule is cleaved into two or more fragments. In general, there are two classifications for bond cleavag ...
step should be energetically more difficult and therefore more sensitive to isotopic substitution than the second C-H bond breaking step.


References

Chemical kinetics Stereochemistry {{Chem-stub