HOME
*





Desaturase
A fatty acid desaturase is an enzyme that removes two hydrogen atoms from a fatty acid, creating a carbon/carbon double bond. These desaturases are classified as: * Delta - indicating that the double bond is created at a fixed position from the carboxyl end of a fatty acid chain. For example, Δ9 desaturase creates a double bond between the ninth and tenth carbon atom from the carboxyl end. * Omega - indicating the double bond is created at a fixed position from the methyl end of a fatty acid chain. For instance, ω3 desaturase creates a double bond between the third and fourth carbon atom from the methyl end. In other words, it creates an omega-3 fatty acid. For example, Δ6 desaturation introduces a double bond between carbons 6 and 7 of Linoleic acid (LA C18H32O2; 18:2-n6) and α-Linolenic acid (ALA: C18H30O2; 18:3-n3), creating ''γ''-linolenic acid (GLA: C18H30O2,18:3-n6) and stearidonic acid (SDA: C18H28O2; 18:4-n3) respectively. In humans, Δ17-desaturase is able to tur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stearoyl-CoA Desaturase-1
Stearoyl-CoA desaturase (Δ-9-desaturase) is an endoplasmic reticulum enzyme that catalyzes the rate-limiting step in the formation of monounsaturated fatty acids (MUFAs), specifically oleate and palmitoleate from stearoyl-CoA and palmitoyl-CoA. Oleate and palmitoleate are major components of membrane phospholipids, cholesterol esters and alkyl-diacylglycerol. In humans, the enzyme is encoded by the SCD gene. Stearoyl-CoA desaturase-1 is a key enzyme in fatty acid metabolism. It is responsible for forming a double bond in Stearoyl-CoA. This is how the monounsaturated fatty acid oleic acid is produced from the saturated fatty acid stearic acid. A series of redox reactions, during which two electrons flow from NADH to flavoprotein cytochrome b5, then to the electron acceptor cytochrome b5 as well as molecular oxygen introduces a single double bond within a row of methylene fatty acyl-CoA substrates. The complexed enzyme adds a single double bond between the C9 and C10 of lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stearoyl-CoA Desaturase-1
Stearoyl-CoA desaturase (Δ-9-desaturase) is an endoplasmic reticulum enzyme that catalyzes the rate-limiting step in the formation of monounsaturated fatty acids (MUFAs), specifically oleate and palmitoleate from stearoyl-CoA and palmitoyl-CoA. Oleate and palmitoleate are major components of membrane phospholipids, cholesterol esters and alkyl-diacylglycerol. In humans, the enzyme is encoded by the SCD gene. Stearoyl-CoA desaturase-1 is a key enzyme in fatty acid metabolism. It is responsible for forming a double bond in Stearoyl-CoA. This is how the monounsaturated fatty acid oleic acid is produced from the saturated fatty acid stearic acid. A series of redox reactions, during which two electrons flow from NADH to flavoprotein cytochrome b5, then to the electron acceptor cytochrome b5 as well as molecular oxygen introduces a single double bond within a row of methylene fatty acyl-CoA substrates. The complexed enzyme adds a single double bond between the C9 and C10 of lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delta-6-desaturase
In enzymology, a linoleoyl-CoA desaturase (also Delta 6 desaturase, ) is an enzyme that converts between types of fatty acids, which are essential nutrients in the human body. The enzyme mainly catalyzes the chemical reaction :linoleoyl-CoA + AH2 + O2 \rightleftharpoons gamma-linolenoyl-CoA + A + 2 H2O The 3 substrates of this enzyme are linoleoyl-CoA, an electron acceptor AH2, and O2, whereas its 3 products are gamma-linolenoyl-CoA, the reduction product A, and H2O. This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with oxidation of a pair of donors resulting in the reduction of O to two molecules of water. The systematic name of this enzyme class is linoleoyl-CoA,hydrogen-donor:oxygen oxidoreductase. Other names in common use include Delta6-desaturase (D6D or Δ-6-desaturase), Delta6-fatty acyl-CoA desaturase, De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Delta 6 Desaturase
In enzymology, a linoleoyl-CoA desaturase (also Delta 6 desaturase, ) is an enzyme that converts between types of fatty acids, which are essential nutrients in the human body. The enzyme mainly catalyzes the chemical reaction :linoleoyl-CoA + AH2 + O2 \rightleftharpoons gamma-linolenoyl-CoA + A + 2 H2O The 3 substrates of this enzyme are linoleoyl-CoA, an electron acceptor AH2, and O2, whereas its 3 products are gamma-linolenoyl-CoA, the reduction product A, and H2O. This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with oxidation of a pair of donors resulting in the reduction of O to two molecules of water. The systematic name of this enzyme class is linoleoyl-CoA,hydrogen-donor:oxygen oxidoreductase. Other names in common use include Delta6-desaturase (D6D or Δ-6-desaturase), Delta6-fatty acyl-CoA desaturase, D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FADS1
Fatty acid desaturase 1 is an enzyme that in humans is encoded by the ''FADS1'' gene. Function The protein encoded by the FADS1 gene is a member of the fatty acid desaturase (FADS) gene family and desaturates omega-3 and omega-6 polyunsaturated fatty acids at the delta-5 position, catalyzing the final step in the formation of eicosapentaenoic acid (EPA) and Arachidonic acid. Desaturase enzymes (such as those encoded by FADS1) regulate unsaturation of fatty acids through the introduction of double bonds between defined carbons of the fatty acyl chain. FADS family members are considered fusion products composed of an N-terminal cytochrome b5-like domain and a C-terminal multiple membrane-spanning desaturase portion, both of which are characterized by conserved histidine motifs. This gene is clustered with family members FADS1 and FADS2 at 11q12-q13.1; this cluster is thought to have arisen evolutionarily from gene duplication based on its similar exon/intron organization. Clinic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fatty Acid Synthesis
In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine (by means of ester bonds) to form triglycerides (also known as "triacylglycerols" – to distinguish them from fatty "acids" – or simply as "fat"), the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells (such as the cell nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, etc.). Straight ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Omega-3 Fatty Acid
Omega−3 fatty acids, also called Omega-3 oils, ω−3 fatty acids or ''n''−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond, three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, being important constituents of animal lipid metabolism, and they play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds, and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil. Mammals a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Oleic Acid
Oleic acid is a fatty acid that occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. In chemical terms, oleic acid is classified as a monounsaturated omega-9 fatty acid, abbreviated with a lipid number of 18:1 ''cis''-9, and a main product of Δ9 desaturase. It has the formula CH3(CH2)7CH=CH(CH2)7COOH. The name derives from the Latin word ''oleum'', which means oil. It is the most common fatty acid in nature. The salts and esters of oleic acid are called oleates. Occurrence Fatty acids (or their salts) often do not occur as such in biological systems. Instead fatty acids such as oleic acid occur as their esters, commonly triglycerides, which are the greasy materials in many natural oils. Oleic acid is the most common monounsaturated fatty acid in nature. It is found in fats (triglycerides), the phospholipids that make membranes, cholesterol esters, and wax esters. Triglycerides of oleic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linoleic Acid
Linoleic acid (LA) is an organic compound with the formula COOH(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups are cis-trans isomerism, ''cis''. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 ''cis''-9,12. A linoleate is a salt (chemistry), salt or ester of this acid. Linoleic acid is a polyunsaturated fatty acid, polyunsaturated omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents. It typically occurs in nature as a triglyceride (ester of glycerol, glycerin) rather than as a free fatty acid. It is one of two essential fatty acids for humans, who must obtain it through their diet, and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from the Latin ''linum'' "flax" + ''oleum'' "oil", reflecting the fact that it was first isolated from linseed oil. History In 1844, F. Sacc, working at the laboratory of Justus von Liebig, isolated linoleic acid from l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unsaturated Fatty Acids
In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food. The term often refers specifically to triglycerides (triple esters of glycerol), that are the main components of vegetable oils and of adipose tissue, fatty tissue in animals; or, even more narrowly, to triglycerides that are solid or semisolid at room temperature, thus excluding oils. The term may also be used more broadly as a synonym of lipid—any substance of biological relevance, composed of carbon, hydrogen, or oxygen, that is insoluble in water but soluble in non-polar solvents. In this sense, besides the triglycerides, the term would include several other types of compounds like monoglyceride, mono- and diglycerides, phospholipids (such as lecithin), sterols (such as cholesterol), waxes (such as beeswax), and free fatty acids, which are usually present in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alpha-Linolenic Acid
''alpha''-Linolenic acid (ALA), also known as α-Linolenic acid (from Greek ''alpha'' meaning "first" and ''linon'' meaning flax), is an ''n''−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named ''all''-''cis''-9,12,15-octadecatrienoic acid. In physiological literature, it is listed by its lipid number, 18:3, and (''n''−3). It is a carboxylic acid with an 18-carbon chain and three ''cis'' double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the ''n'' end. Thus, α-linolenic acid is a polyunsaturated ''n''−3 (omega-3) fatty acid. It is an isomer of gamma-linolenic acid (GLA), an 18:3 (''n''−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Etymology The word ''linolenic'' is an irregular derivation from ''linoleic'', which itself is der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stearidonic Acid
Stearidonic acid (SDA: C18 H28 O2; 18: 4, n-3) is an ω-3 fatty acid, sometimes called moroctic acid. It is biosynthesized from alpha-linolenic acid (ALA: C18H30O2; 18:3, n-3) by the enzyme delta-6-desaturase, that removes two hydrogen (H) atoms from a fatty acid, creating a carbon/carbon double bonding, via an oxygen requiring unsaturation. SDA also act as precursor for the rapid synthesis of longer chain fatty acids, called ''N''-acylethanolamine (NAEs), involved in many important biological processes. Natural sources of this fatty acid are the seed oils of hemp, blackcurrant, corn gromwell, and ''Echium plantagineum'', and the cyanobacterium ''Spirulina''. SDA can also be synthesized in a lab. A GMO soybean source is approved by the European Food Safety Authority. See also *List of omega-3 fatty acids *Omega-3 fatty acids *Essential fatty acids Essential fatty acids, or EFAs, are fatty acids that humans and other animals must ingest because the body requires them for g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]