HOME

TheInfoList



OR:

Covalent adaptable networks (CANs) are a type of
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
material that closely resemble
thermosetting polymer In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening (" curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and ...
s (thermosets). However, they are distinguished from thermosets by the incorporation of
dynamic covalent chemistry Dynamic covalent chemistry (DCvC) is a synthetic strategy employed by chemists to make complex supramolecular assemblies from discrete molecular building blocks. DCvC has allowed access to complex assemblies such as covalent organic frameworks ...
into the polymer network. When a
stimulus A stimulus is something that causes a physiological response. It may refer to: *Stimulation **Stimulus (physiology), something external that influences an activity **Stimulus (psychology), a concept in behaviorism and perception *Stimulus (economi ...
(for example heat, light, pH, ...) is applied to the material, these dynamic bonds become active and can be broken or exchanged with other pending
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest ...
s, allowing the polymer network to change its topology. This introduces reshaping, (re)processing and
recycling Recycling is the process of converting waste materials into new materials and objects. The recovery of energy from waste materials is often included in this concept. The recyclability of a material depends on its ability to reacquire the p ...
into thermoset-like materials.


Background

Historically, polymer materials have always been subdivided in two categories based on their thermomechanical behaviour.
Thermoplastic A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling. Most thermoplastics have a high molecular weight. The polymer chains associate ...
polymer materials melt upon heating and become
viscous liquid In condensed matter physics and physical chemistry, the terms viscous liquid, supercooled liquid, and glassforming liquid are often used interchangeably to designate liquids that are at the same time highly viscous (see Viscosity of amorphous mate ...
s, whereas thermosetting polymer materials remain solid as a result of
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing. Thermoplastics consist of long polymer chains that are stiff at service temperatures but become softer with increasing temperature. At low temperatures, the molecular motion of the polymer chains is limited due to chain-entanglements, resulting in a hard and glassy material. Increasing the temperature will lead to a transition from a hard to a soft material at the
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubb ...
(Tg) yielding a visco-elastic liquid. In the case of (semi-)crystalline polymer materials, viscous flow is achieved when the
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends ...
(Tm) is reached and the
intermolecular force An intermolecular force (IMF) (or secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. a ...
s in the ordered crystalline domain are overcome. Thermoplastics regain their solid properties upon cooling and can thus be reshaped by polymer processing methods such as
extrusion Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex c ...
and
injection moulding Injection moulding (U.S. spelling: injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for ...
and they can also be recycled. Examples of thermoplastic polymers are
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a ...
,
polycarbonate Polycarbonates (PC) are a group of thermoplastic polymers containing carbonate groups in their chemical structures. Polycarbonates used in engineering are strong, tough materials, and some grades are optically transparent. They are easily work ...
,
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging ( plastic bags, plastic films, geomembranes and containers including bo ...
,
nylon Nylon is a generic designation for a family of synthetic polymers composed of polyamides ( repeating units linked by amide links).The polyamides may be aliphatic or semi-aromatic. Nylon is a silk-like thermoplastic, generally made from petro ...
,
Acrylonitrile butadiene styrene Acrylonitrile butadiene styrene (ABS) (chemical formula (C8H8)''x''·(C4H6)''y''·(C3H3N)''z'' is a common thermoplastic polymer. Its glass transition temperature is approximately . ABS is amorphous and therefore has no true melting point. A ...
(ABS), etc. Thermosets, on the other hand, are three-dimensional networks that are formed through permanent chemical cross-linking of multifunctional compounds. This is an irreversible process that results in infusible and insoluble polymer networks with superior properties compared to most thermoplastics. When a thermoset is exposed to heat, it maintains its dimensional stability and thus cannot be reshaped. These polymer materials are generally used for demanding applications (''e.g.''
wind turbine A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each year. ...
s,
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astrona ...
, etc.) that require
chemical resistance The chemical resistance of a material or surface can be determined in compliance with ISO 2812 Paints and varnishes – Determination of resistance to liquids – Part 1: Immersion in liquids other than water (ISO 2812-1:2007); German Version EN I ...
, dimensional stability and good mechanical properties. Typical thermosetting materials include
epoxy resins Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also coll ...
,
polyester resin Polyester resins are synthetic resins formed by the reaction of dibasic organic acids and polyhydric alcohols. Maleic anhydride is a commonly used raw material with diacid functionality in unsaturated polyester resins. Unsaturated polyester resins ...
s,
polyurethane Polyurethane (; often abbreviated PUR and PU) refers to a class of polymers composed of organic chemistry, organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethan ...
s, etc. In the framework of sustainability, the combination of the mechanical properties of thermosets with the reprocessability of thermoplastics through the introduction of dynamic bonds has been the topic of numerous research studies. The use of
non-covalent interaction In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The c ...
s such as
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
ing,
pi-stacking In chemistry, pi stacking (also called π–π stacking) refers to the presumptive attractive, noncovalent pi interactions (molecular orbital, orbital overlap) between the pi bonds of aromaticity, aromatic rings. However this is a misleading des ...
or crystallization that lead to physical cross-links between polymer chains is one way of introducing dynamic cross-linking. The thermoreversible nature of the physical cross-links results in polymer materials with improved mechanical properties without losing reprocessability. The properties of these physical networks are highly dependent on the used
backbone The backbone is the vertebral column of a vertebrate. Arts, entertainment, and media Film * ''Backbone'' (1923 film), a 1923 lost silent film starring Alfred Lunt * ''Backbone'' (1975 film), a 1975 Yugoslavian drama directed by Vlatko Gilić M ...
and type of non-covalent interactions, but typically they are
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Bre ...
at low temperature and become elastic or rubbery above Tg. Upon further heating, the physical cross-links disappear and the material behaves as a visco-elastic liquid, allowing it to be reprocessed. These materials are also known as
thermoplastic elastomer Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers, are a class of copolymers or a physical mix of polymers (usually a plastic and a rubber) that consist of materials with both thermoplastic and elastomeric properties. ...
s. Covalent adaptable networks (CANs) instead use dynamic covalent bonds that are able to undergo exchange reactions upon application of an external stimulus, typically heat or light. In absence of a stimulus, these materials behave as thermosets, showing high chemical resistance and dimensional stability, but when the stimulus is applied, the dynamic bonds become activated, enabling the network to rearrange its topology on a molecular level. As a result, these materials are able to undergo permanent deformations, enabling reshaping, reprocessing,
self-healing Self-healing refers to the process of recovery (generally from psychological disturbances, trauma, etc.), motivated by and directed by the patient, guided often only by instinct. Such a process encounters mixed fortunes due to its amateur nature, ...
, etc. As such, CANs can be seen as an intermediate bridge between thermosets and thermoplastics. In 2011, the research group of
French French (french: français(e), link=no) may refer to: * Something of, from, or related to France ** French language, which originated in France, and its various dialects and accents ** French people, a nation and ethnic group identified with Franc ...
researcher
Ludwik Leibler Ludwik Leibler, born in 1952 is a Polish-born French physicist. He is Professor of École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI ParisTech) and member of the French Academy of Sciences and National Academy ...
developed a specific class of CANs based on an associative exchange mechanism (see subsection Classification). By adding a suitable
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
to epoxy/acid polyester based networks, they were able to prepare a permanent epoxy network that showed a gradual viscosity decrease upon heating. This type of behaviour is typical for vitreous silica and had never before been seen in organic polymer materials. Therefore, the authors introduced the name
Vitrimers Vitrimers are a class of plastics, which are derived from thermosetting polymers (thermosets) and are very similar to them. Vitrimers consist of molecular, covalent networks, which can change their topology by thermally activated bond-exchange reac ...
for these kind of materials. Recent advancements in the field of CANs have shown their potential to someday replace conventional non-recyclable thermosetting materials. The exponential growth of publications involving CANs seen in literature indicate the increasing interest from academia. Additionally, there's also a growing interest in CANs from industry with, for example, the first vitrimer start-up company Mallinda and multiple
European Union The European Union (EU) is a supranational political and economic union of member states that are located primarily in Europe. The union has a total area of and an estimated total population of about 447million. The EU has often been des ...
funded research projects with collaborations between academic and industry partners (such as Vitrimat, PUReSmart and NIPU-EJD).


Classification

CANs are currently subdivided in two groups, dissociative CANs and associative CANs, based on the underlying mechanism of the bond exchange reactions (''i.e.'' the order in which the bond forming and breaking occurs) and their resulting temperature dependence.  


Dissociative CANs

The exchange mechanism of dissociative CANs requires a bond-breaking event prior to the formation of a new bond (''i.e.'' an elimination/addition pathway). Upon application of a stimulus, the equilibrium shifts to the dissociated state, resulting in a temporarily decreased cross-link density in the network. When a sufficient amount of dynamic bonds dissociate due to the equilibrium being shifted below the
gel point In polymer chemistry, the gel point is an abrupt change in the viscosity of a solution containing polymerizable components. At the gel point, a solution undergoes gelation as reflected in a loss in fluidity. Gelation is characteristic of polymeri ...
, the material will suffer a loss of dimensional stability and show a sudden and drastic
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
decrease.  After removal of the stimulus, the bonds reform and, in the ideal case, the original cross-link density is restored. This temporary decrease in cross-link density enables very fast topology rearrangements in dissociative CANs, such as viscous flow and
stress relaxation In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some ...
, which allows the reprocessing of covalently cross-linked polymer networks. Additionally, dissociative CANs can be solubilized in good
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
s.


Associative CANs

In contrast to dissociative CANs, networks in associative CANs do not depolymerize upon application of a stimulus and maintain a near constant cross-link density. Here, the exchange mechanism relies on the formation of a new bond before fragmentation of another bond (''i.e.'' an addition/elimination pathway). This means that bond exchange occurs via a temporarily more cross-linked intermediate state. However, in practice, this small increase will often be negligible, resulting in a practically constant cross-link density. As a result, associative CANs remain insoluble in inert solvents, even at elevated temperatures. In the case of Vitrimers, associative exchange is triggered by heat and the viscosity of these materials is controlled by chemical exchange reactions, leading to a linear dependence of viscosity with inverse temperature according to the
Arrhenius law In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1 ...
. The decreased viscosity caused by rapid dynamic bond exchanges enables stress relaxation and network topology rearrangements in these materials.


Applications


Recycling of PU foams

Polyurethane (PU)
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the reg ...
s are highly versatile engineering materials used for a wide range of applications such as
mattress A mattress is a large, usually rectangular pad for supporting a lying person. It is designed to be used as a bed, or on a bed frame as part of a bed. Mattresses may consist of a quilted or similarly fastened case, usually of heavy cloth, conta ...
es,
insulation Insulation may refer to: Thermal * Thermal insulation, use of materials to reduce rates of heat transfer ** List of insulation materials ** Building insulation, thermal insulation added to buildings for comfort and energy efficiency *** Insulated ...
, automotive, footwear and construction materials. Conventional PU foams are cross-linked materials or thermosets. PU foams can either be mechanically recycled (where PU foams are grinded and used as
fillers In processed animal foods, a filler is an ingredient added to provide dietary fiber, bulk or some other non-nutritive purpose. Products like corncobs, feathers, soy, cottonseed hulls, peanut hulls, citrus pulp, screening, weeds, straw, and cere ...
), or chemically recycled (where PU foams are downcycled into polyols or other monomeric components via chemical degradation). However, most PU foams end up on
landfill A landfill site, also known as a tip, dump, rubbish dump, garbage dump, or dumping ground, is a site for the disposal of waste materials. Landfill is the oldest and most common form of waste disposal, although the systematic burial of the waste ...
s. Currently, CANs are being investigated as a replacement for conventional foams, which would allow for easier recyclability of PU waste. For example, it was shown recently that the incorporation of
disulfide In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
bonds in PU foams led to their malleability and reprocessability into
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus and high failure strain compared with other materials. The term, a portmanteau of ''elastic p ...
s. Another possible solution is the addition of catalyst to post-consumer PU, which activates the exchange of urethane bonds and makes them reprocessable .


Self-healing materials

Polymer networks are susceptible to damage during their use. Self-healing is a promising tool to increase the lifetime and performance of the polymer, while simultaneously reducing plastic waste. Self-healing can operate via extrinsic or intrinsic mechanisms. Extrinsic systems rely on the incorporation of small capsules containing healing agents that get released during damage/cracking and heal the material, while intrinsic systems are inherently able to restore their integrity through, for example, incorporation of dynamic bonds into the polymer network. The most known example of intrinsic self-healing is thermally healable crosslinked networks with Diels-Alder adducts, but various other chemistries have also been investigated, including
transesterification In organic chemistry, transesterification is the process of exchanging the organic group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. The reaction can ...
,
olefin metathesis Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often create ...
, and alkoxyamine chemistry. Another promising strategy involves light-activated systems, such as photothermal and photoreversible chemistry. For photothermal systems, the healing is triggered by heating, even if light is the transient stimulus that makes the healing possible. Dynamic exchange reactions are also often activated by direct
infrared heating An infrared heater or heat lamp is a body with a higher temperature which transfers energy to a body with a lower temperature through electromagnetic radiation. Depending on the temperature of the emitting body, the wavelength of the peak of the i ...
with the assistance of photothermal fillers (''e.g.''
carbon black Carbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of coal and coal tar, vegetable matter, or petroleum products, including fuel oil, fluid ...
,
graphene Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure.
, and
gold nanoparticles Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particle ...
). Self-healing materials based on direct photoreversible chemistry in principle don't involve heating. Some examples of this include the systems based on photoreversible
cycloaddition In organic chemistry, a cycloaddition is a chemical reaction in which "two or more Unsaturated hydrocarbon, unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of th ...
that require ultraviolet (UV) irradiation, as well as photo-triggered radical reshufflings of sulfur-based dynamic covalent bonds.


Nanocomposites

Thermosets are currently in high demand for high-performance composites that are heavily needed in lightweight engineering and ultrahigh-performance mechanical parts. Applications include: packaging, remediation, energy storage, electromagnetic absorption, sensing and actuation, transportation and safety, defense systems, thermal flow control, information industry, catalysts, cosmetics, sports, etc. Such materials consist of a “soft” polymer phase that is combined with
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s dispersed in the polymer phase. The shape of these nanoparticles can vary wildly, from rods to spheres to platelets, to fibres, etc. The unique thermo-responsive properties of CANs, induced by bond exchange kinetics, open interesting possibilities for the introduction of property switches based on various external effects. For example, the addition of a resistive heater for electrothermal conversion (''e.g.'' single walled
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s) can allow for an on-demand mechanical property switch via an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
. Alternatively, by adding a filler like
graphene oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the ...
, light irradiation can be used for an induced photo-thermal effect allowing for switching of the mechanical properties as a response to light-irradiation. Other interesting nanoparticles for the application in CANs include clay
nanosheet A nanosheet is a two-dimensional nanostructure with thickness in a scale ranging from 1 to 100 nm. A typical example of a nanosheet is graphene, the thinnest two-dimensional material (0.34 nm) in the world. It consists of a single layer o ...
s, graphene and
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall ...
.


3D printing

In recent years,
3D printing 3D printing or additive manufacturing is the Manufacturing, construction of a three-dimensional object from a computer-aided design, CAD model or a digital 3D modeling, 3D model. It can be done in a variety of processes in which material is ...
, or additive manufacturing (AM), saw rapid developments as the technique became more and more popular. Currently, plastics are the most common raw material used for 3D printing due to their wide availability, diversity and light weight. The versatility of AM and its significant development resulted in its use for many
applications Application may refer to: Mathematics and computing * Application software, computer software designed to help the user to perform specific tasks ** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
ranging from manufacturing and medical sectors to the custom art and design sector. With the market of 3D printing expected to grow even further in the coming years, the use of CANs as a resource for AM is under investigation as a replacement for traditional thermosets, which could make up 22% of the global market for AM by the end of 2029. By replacing traditional thermoset ink with CAN-based inks, complicated 3D geometries can still be printed that behave like traditional thermosets with excellent mechanical properties at service conditions, but can later also be recycled into new ink for the next round of 3D printing. One example involved the 3D printing of an epoxy ink which is able to undergo transesterification reactions after printing. During the printing cycle, the ink is first slightly cured before being printed at high temperature into the desired 3D structure, and followed by a second curing step in an oven after printing. The printed epoxy parts can then be recycled by dissolving in
ethylene glycol Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic compound (a vicinal diol) with the formula . It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odo ...
at high temperature and reused as ink in a new printing cycle.


Chemistries used in CANs

Various dynamic chemistries have already been incorporated in CANs; some of the more notable ones include
transesterification In organic chemistry, transesterification is the process of exchanging the organic group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. The reaction can ...
, Diels-Alder exchange,
disulfide In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
exchange,
transamination Transamination is a chemical reaction that transfers an amino group to a ketoacid to form new amino acids. This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential a ...
of vinylogous urethanes, transcarbamoylation of urethanes,
olefin metathesis Olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often create ...
, and trans-N-alkylation of 1,2,3-triazolium salts.


References

{{Reflist Polymers