HOME

TheInfoList



OR:

Cosmic dustalso called extraterrestrial dust, space dust, or star dustis
dust Dust is made of particle size, fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian processes, aeolian process), Types of volcan ...
that occurs in outer space or has fallen onto
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. Most cosmic dust particles measure between a few
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s and , such as
micrometeoroid A micrometeoroid is a tiny meteoroid: a small particle of rock in space, usually weighing less than a gram. A micrometeorite is such a particle that survives passage through Earth's atmosphere and reaches Earth's surface. The term "micrometeoro ...
s (<30 μm) and
meteoroids A meteoroid ( ) is a small rocky or metallic body in outer space. Meteoroids are distinguished as objects significantly smaller than ''asteroids'', ranging in size from grains to objects up to wide. Objects smaller than meteoroids are classifie ...
(>30 μm). Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement. In the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, interplanetary dust causes the zodiacal light. Solar System dust includes comet dust, planetary dust (like from Mars), asteroidal dust, dust from the
Kuiper belt The Kuiper belt ( ) is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
, and interstellar dust passing through the Solar System. Thousands of tons of cosmic dust are estimated to reach Earth's surface every year, with most grains having a mass between 10−16 kg (0.1 pg) and 10−4 kg (0.1 g). The density of the dust cloud through which the Earth is traveling is approximately 10−6 dust grains/m3. Cosmic dust contains some complex
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s (amorphous organic solids with a mixed
aromatic In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated system, conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected from conjugati ...
aliphatic structure) that could be created naturally, and rapidly, by
stars A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of ...
. A smaller fraction of dust in space is "stardust" consisting of larger refractory minerals that condensed as matter left by stars. Interstellar dust particles were collected by the ''Stardust'' spacecraft and samples were returned to Earth in 2006.


Study and importance

Cosmic dust was once solely an annoyance to astronomers, as it obscures objects they wished to observe. When
infrared astronomy Infrared astronomy is a sub-discipline of astronomy which specializes in the astronomical observation, observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 microm ...
began, the dust particles were observed to be significant and vital components of astrophysical processes. Their analysis can reveal information about phenomena like the formation of the Solar System. For example, cosmic dust can drive the mass loss when a
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
is nearing the end of its life, play a part in the early stages of
star formation Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
, and form
planet A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s. In the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, dust plays a major role in the zodiacal light,
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
's B Ring spokes, the outer diffuse planetary rings at
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, Saturn,
Uranus Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
and
Neptune Neptune is the eighth and farthest known planet from the Sun. It is the List of Solar System objects by size, fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 t ...
, and
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s. The
interdisciplinary Interdisciplinarity or interdisciplinary studies involves the combination of multiple academic disciplines into one activity (e.g., a research project). It draws knowledge from several fields such as sociology, anthropology, psychology, economi ...
study of dust brings together different scientific fields:
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
( solid-state,
electromagnetic theory In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interact ...
, surface physics,
statistical physics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
, thermal physics), fractal mathematics,
surface chemistry Surface science is the study of physics, physical and chemistry, chemical phenomena that occur at the interface (chemistry), interface of two phase (matter), phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum int ...
on dust grains, meteoritics, as well as every branch of
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
and
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
. These disparate research areas can be linked by the following theme: the cosmic dust particles evolve cyclically; chemically, physically and dynamically. The evolution of dust traces out paths in which the Universe recycles material, in processes analogous to the daily recycling steps with which many people are familiar: production, storage, processing, collection, consumption, and discarding. Observations and measurements of cosmic dust in different regions provide an important insight into the Universe's recycling processes; in the clouds of the diffuse
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, in
molecular cloud A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
s, in the circumstellar dust of young stellar objects, and in planetary systems such as the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, where astronomers consider dust as in its most recycled state. The astronomers accumulate observational ‘snapshots’ of dust at different stages of its life and, over time, form a more complete movie of the Universe's complicated recycling steps. Parameters such as the particle's initial motion, material properties, intervening plasma and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
determined the dust particle's arrival at the dust detector. Slightly changing any of these parameters can give significantly different dust dynamical behavior. Therefore, one can learn about where that object came from, and what is (in) the intervening medium.


Detection methods

A wide range of methods is available to study cosmic dust. Cosmic dust can be detected by
remote sensing Remote sensing is the acquisition of information about an physical object, object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring inform ...
methods that utilize the radiative properties of cosmic dust particles, cf. Zodiacal light measurement. Cosmic dust can also be detected directly ('in-situ') using a variety of collection methods and from a variety of collection locations. Estimates of the daily influx of extraterrestrial material entering the Earth's atmosphere range between 5 and 300 tonnes.
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
collects samples of star dust particles in the Earth's atmosphere using plate collectors under the wings of stratospheric-flying
airplane An airplane (American English), or aeroplane (Commonwealth English), informally plane, is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, Propeller (aircraft), propeller, or rocket engine. Airplanes come in a vari ...
s. Dust samples are also collected from surface deposits on the large Earth ice-masses (Antarctica and Greenland/the Arctic) and in deep-sea sediments. Don Brownlee at the
University of Washington The University of Washington (UW and informally U-Dub or U Dub) is a public research university in Seattle, Washington, United States. Founded in 1861, the University of Washington is one of the oldest universities on the West Coast of the Uni ...
in Seattle first reliably identified the extraterrestrial nature of collected dust particles in the latter 1970s. Another source is the
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s, which contain stardust extracted from them. Stardust grains are solid refractory pieces of individual presolar stars. They are recognized by their extreme isotopic compositions, which can only be isotopic compositions within evolved stars, prior to any mixing with the interstellar medium. These grains condensed from the stellar matter as it cooled while leaving the star. In interplanetary space, dust detectors on planetary spacecraft have been built and flown, some are presently flying, and more are presently being built to fly. The large orbital velocities of dust particles in interplanetary space (typically 10–40 km/s) make intact particle capture problematic. Instead, in-situ dust detectors are generally devised to measure parameters associated with the high-velocity impact of dust particles on the instrument, and then derive physical properties of the particles (usually mass and velocity) through laboratory calibration (i.e., impacting accelerated particles with known properties onto a laboratory replica of the dust detector). Over the years dust detectors have measured, among others, the impact light flash, acoustic signal and impact ionisation. Recently the dust instrument on Stardust captured particles intact in low-density
aerogel Aerogels are a class of manufacturing, synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid wit ...
. Dust detectors in the past flew on the '' HEOS 2'', ''
Helios In ancient Greek religion and Greek mythology, mythology, Helios (; ; Homeric Greek: ) is the god who personification, personifies the Sun. His name is also Latinized as Helius, and he is often given the epithets Hyperion ("the one above") an ...
'', ''
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is a NASA space probe launched in 1972 that completed the first mission to the planet Jupiter. ''Pioneer 10'' became the first of five artificial objects to achieve the escape velocity needed ...
'', ''
Pioneer 11 ''Pioneer 11'' (also known as ''Pioneer G'') is a NASA robotic space probe launched on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, the solar wind, and cosmic rays. It was the first probe to Exploration ...
'', ''
Giotto Giotto di Bondone (; – January 8, 1337), known mononymously as Giotto, was an List of Italian painters, Italian painter and architect from Florence during the Late Middle Ages. He worked during the International Gothic, Gothic and Italian Ren ...
'', '' Galileo, Ulysses'' and '' Cassini'' space missions, on the Earth-orbiting LDEF, EURECA, and Gorid satellites, and some scientists have utilized the ''
Voyager 1 ''Voyager 1'' is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar medium, interstellar space beyond the Sun's heliosphere. It was launched 16 days afte ...
'' and '' 2'' spacecraft as giant Langmuir probes to directly sample the cosmic dust. Presently dust detectors are flying on the '' Ulysses'', Proba, '' Rosetta'', '' Stardust'', and the ''
New Horizons ''New Horizons'' is an Interplanetary spaceflight, interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institut ...
'' spacecraft. The collected dust at Earth or collected further in space and returned by sample-return space missions is then analyzed by dust scientists in their respective laboratories all over the world. One large storage facility for cosmic dust exists at the NASA Houston JSC. Infrared light can penetrate cosmic dust clouds, allowing us to peer into regions of star formation and the centers of galaxies.
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
's Spitzer Space Telescope was the largest infrared space telescope, before the launch of the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
. During its mission, Spitzer obtained images and spectra by detecting the
thermal radiation Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electro ...
emitted by objects in space between wavelengths of 3 and 180 micrometres. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Findings from the Spitzer have revitalized the studies of cosmic dust. One report showed some evidence that cosmic dust is formed near a supermassive black hole. Another detection mechanism is polarimetry. Dust grains are not spherical and tend to align to interstellar
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s, preferentially polarizing starlight that passes through dust clouds. In nearby interstellar space, where interstellar reddening is not intense enough to be detected, high precision optical polarimetry has been used to glean the structure of dust within the
Local Bubble The Local Bubble, or Local Cavity, is a relative superbubble, cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains the List of nearest stars and brown dwarfs, nearest stars and brown dwarfs and, among others, the ...
. In 2019, researchers found interstellar dust in Antarctica which they relate to the Local Interstellar Cloud. The detection of interstellar dust in Antarctica was done by the measurement of the radionuclides iron-60 and manganese-53 by highly sensitive Accelerator mass spectrometry.


Radiation properties

A dust particle interacts with
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
in a way that depends on its cross section, the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of the electromagnetic radiation, and on the nature of the grain: its
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, size, etc. The radiation process for an individual grain is called its ''
emissivity The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is n ...
'', dependent on the grain's ''efficiency factor''. Further specifications regarding the emissivity process include
extinction Extinction is the termination of an organism by the death of its Endling, last member. A taxon may become Functional extinction, functionally extinct before the death of its last member if it loses the capacity to Reproduction, reproduce and ...
,
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
, absorption, or polarisation. In the radiation emission curves, several important signatures identify the composition of the emitting or absorbing dust particles. Dust particles can scatter light nonuniformly. Forward scattered light is light that is redirected slightly off its path by
diffraction Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
, and back-scattered light is reflected light. The scattering and extinction ("dimming") of the radiation gives useful information about the dust grain sizes. For example, if the in one's data is many times brighter in forward-scattered visible light than in back-scattered visible light, then it is understood that a significant fraction of the particles are about a micrometer in diameter. The scattering of light from dust grains in long exposure visible photographs is quite noticeable in reflection nebulae, and gives clues about the individual particle's light-scattering properties. In X-ray wavelengths, many scientists are investigating the scattering of X-rays by interstellar dust, and some have suggested that astronomical X-ray sources would possess diffuse haloes, due to the dust.


Presolar grains

Presolar grains are contained within meteorites, from which they are extracted in terrestrial laboratories. The term "stardust" or "presolar stardust" is sometimes used to distinguish grains from a single star in comparison to aggregated interstellar dust particles, though this distinction is not universally applied. Presolar material was a component of the dust in the interstellar medium before its incorporation into meteorites. The meteorites have stored those presolar grains ever since the meteorites first assembled within the planetary accretion disk more than four billion years ago. Carbonaceous chondrites are especially fertile reservoirs of presolar material. Presolar grains definitionally existed before the Earth was formed. ''Presolar grain'' (and, less frequently, "stardust" or "presolar stardust") is the scientific term referring to refractory dust grains that condensed from cooling ejected gases from individual presolar stars and incorporated into the cloud from which the Solar System condensed. Many different types of presolar grains have been identified by laboratory measurements of the highly unusual isotopic composition of the chemical elements that comprise each presolar grain. These refractory mineral grains may earlier have been coated with volatile compounds, but those are lost in the dissolving of meteorite matter in acids, leaving only insoluble refractory minerals. Finding the grain cores without dissolving most of the meteorite has been possible, but difficult and labor-intensive. Many new aspects of
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
have been discovered from the isotopic ratios within the presolar grains. An important property of presolar is the hard, refractory, high-temperature nature of the grains. Prominent are
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
,
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
,
aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
, aluminium
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , a diminutive form of ''spine,'' in reference to its pointed crystals. Prop ...
, and other such solids that would condense at high temperature from a cooling gas, such as in stellar winds or in the decompression of the inside of a
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
. They differ greatly from the solids formed at low temperature within the interstellar medium. Also important are their extreme isotopic compositions, which are expected to exist nowhere in the interstellar medium. This also suggests that the presolar grains condensed from the gases of individual stars before the
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s could be diluted by mixing with the interstellar medium. These allow the source stars to be identified. For example, the heavy elements within the silicon carbide (SiC) grains are almost pure S-process isotopes, fitting their condensation within AGB star red giant winds inasmuch as the AGB stars are the main source of S-process nucleosynthesis and have atmospheres observed by astronomers to be highly enriched in dredged-up s process elements. Another dramatic example is given by supernova condensates, usually shortened by acronym to SUNOCON (from SUperNOva CONdensate) to distinguish them from other grains condensed within stellar atmospheres. SUNOCONs contain in their calcium an excessively large abundance of 44Ca, demonstrating that they condensed containing abundant radioactive 44Ti, which has a 65-year
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
. The outflowing 44Ti nuclei were thus still "alive" (radioactive) when the SUNOCON condensed near one year within the expanding supernova interior, but would have become an extinct radionuclide (specifically 44Ca) after the time required for mixing with the interstellar gas. Its discovery proved the prediction from 1975 that it might be possible to identify SUNOCONs in this way. The SiC SUNOCONs (from supernovae) are only about 1% as numerous as are SiC stardust from AGB stars. Stardust itself (SUNOCONs and AGB grains that come from specific stars) is but a modest fraction of the condensed cosmic dust, forming less than 0.1% of the mass of total interstellar solids. The high interest in presolar grains derives from new information that it has brought to the sciences of
stellar evolution Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
and
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
. Laboratories have studied solids that existed before the Earth was formed. This was once thought impossible, especially in the 1970s when cosmochemists were confident that the Solar System began as a hot gas virtually devoid of any remaining solids, which would have been vaporized by high temperature. The existence of presolar grains proved this historic picture incorrect.


Some bulk properties

Cosmic dust is made of dust grains and aggregates into dust particles. These particles are irregularly shaped, with
porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
ranging from ''fluffy'' to ''compact''. The composition, size, and other properties depend on where the dust is found, and conversely, a compositional analysis of a dust particle can reveal much about the dust particle's origin. General diffuse
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
dust, dust grains in dense clouds, planetary rings dust, and circumstellar dust, are each different in their characteristics. For example, grains in dense clouds have acquired a mantle of ice and on average are larger than dust particles in the diffuse interstellar medium. ''Interplanetary dust particles'' (IDPs) are generally larger still. Most of the influx of extraterrestrial matter that falls onto the Earth is dominated by meteoroids with diameters in the range 50 to 500 micrometers, of average density 2.0 g/cm3 (with porosity about 40%). The total influx rate of meteoritic sites of most IDPs captured in the Earth's
stratosphere The stratosphere () is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher ...
range between 1 and 3 g/cm3, with an average density at about 2.0 g/cm3. Other specific dust properties: in ''circumstellar dust'', astronomers have found molecular signatures of CO,
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
, amorphous silicate, polycyclic aromatic hydrocarbons, water ice, and polyformaldehyde, among others (in the diffuse
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, there is evidence for silicate and carbon grains). '' Cometary dust'' is generally different (with overlap) from '' asteroidal dust''. Asteroidal dust resembles carbonaceous chondritic meteorites. Cometary dust resembles interstellar grains which can include silicates, polycyclic aromatic hydrocarbons, and water ice. In September 2020, evidence was presented of solid-state water in the
interstellar medium The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
, and particularly, of water ice mixed with silicate grains in cosmic dust grains.


Dust grain formation

The large grains in interstellar space are probably complex, with refractory cores that condensed within stellar outflows topped by layers acquired during incursions into cold dense interstellar clouds. That cyclic process of growth and destruction outside of the clouds has been modeled to demonstrate that the cores live much longer than the average lifetime of dust mass. Those cores mostly start with silicate particles condensing in the atmospheres of cool, oxygen-rich red-giants and carbon grains condensing in the atmospheres of cool carbon stars. Red giants have evolved or altered off the
main sequence In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or d ...
and have entered the
giant In folklore, giants (from Ancient Greek: ''wiktionary:gigas, gigas'', cognate wiktionary:giga-, giga-) are beings of humanoid appearance, but are at times prodigious in size and strength or bear an otherwise notable appearance. The word ''gia ...
phase of their evolution and are the major source of refractory dust grain cores in galaxies. Those refractory cores are also called stardust (section above), which is a scientific term for the small fraction of cosmic dust that condensed thermally within stellar gases as they were ejected from the stars. Several percent of refractory grain cores have condensed within expanding interiors of supernovae, a type of cosmic decompression chamber. Meteoriticists who study refractory stardust (extracted from meteorites) often call it presolar grains but that within meteorites is only a small fraction of all presolar dust. Stardust condenses within the stars via considerably different condensation chemistry than that of the bulk of cosmic dust, which accretes cold onto preexisting dust in dark molecular clouds of the galaxy. Those molecular clouds are very cold, typically less than 50K, so that ices of many kinds may accrete onto grains, in cases only to be destroyed or split apart by radiation and sublimation into a gas component. Finally, as the Solar System formed many interstellar dust grains were further modified by coalescence and chemical reactions in the planetary accretion disk. The history of the various types of grains in the early Solar System is complicated and only partially understood. Astronomers know that the dust is formed in the envelopes of late-evolved stars from specific observational signatures. In infrared light, emission at 9.7 micrometres is a signature of silicate dust in cool evolved oxygen-rich giant stars. Emission at 11.5 micrometres indicates the presence of silicon carbide dust in cool evolved carbon-rich giant stars. These help provide evidence that the small silicate particles in space came from the ejected outer envelopes of these stars. Conditions in interstellar space are generally not suitable for the formation of silicate cores. This would take excessive time to accomplish, even if it might be possible. The arguments are that: given an observed typical grain diameter ''a'', the time for a grain to attain ''a'', and given the temperature of interstellar gas, it would take considerably longer than the age of the Universe for interstellar grains to form. On the other hand, grains are seen to have recently formed in the vicinity of nearby stars, in nova and
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
ejecta, and in R Coronae Borealis variable stars which seem to eject discrete clouds containing both gas and dust. So mass loss from stars is unquestionably where the refractory cores of grains formed. Most dust in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
is highly processed dust, recycled from the material out of which the Solar System formed and subsequently collected in the planetesimals, and leftover solid material such as
comet A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s and
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s, and reformed in each of those bodies' collisional lifetimes. During the Solar System's formation history, the most abundant element was (and still is) H2. The metallic elements: magnesium, silicon, and iron, which are the principal ingredients of rocky planets, condensed into solids at the highest temperatures of the planetary disk. Some molecules such as CO, N2, NH3, and free oxygen, existed in a gas phase. Some molecules, for example, graphite (C) and SiC would condense into solid grains in the planetary disk; but carbon and SiC grains found in meteorites are presolar based on their isotopic compositions, rather than from the planetary disk formation. Some molecules also formed complex organic compounds and some molecules formed frozen ice mantles, of which either could coat the "refractory" (Mg, Si, Fe) grain cores. Stardust once more provides an exception to the general trend, as it appears to be totally unprocessed since its thermal condensation within stars as refractory crystalline minerals. The condensation of graphite occurs within supernova interiors as they expand and cool, and do so even in gas containing more oxygen than carbon, a surprising carbon chemistry made possible by the intense radioactive environment of supernovae. This special example of dust formation has merited specific review. Planetary disk formation of precursor molecules was determined, in large part, by the temperature of the solar nebula. Since the temperature of the solar nebula decreased with heliocentric distance, scientists can infer a dust grain's with knowledge of the grain's materials. Some materials could only have been formed at high temperatures, while other grain materials could only have been formed at much lower temperatures. The materials in a single interplanetary dust particle often show that the grain elements formed in different locations and at different times in the solar nebula. Most of the matter present in the original solar nebula has since disappeared; drawn into the Sun, expelled into interstellar space, or reprocessed, for example, as part of the planets, asteroids or comets. Due to their highly processed nature, IDPs (interplanetary dust particles) are fine-grained mixtures of thousands to millions of mineral grains and
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
components. We can picture an IDP as a "matrix" of material with embedded elements which were formed at different times and places in the
solar nebula There is evidence that the formation of the Solar System began about 4.6 bya, billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, whil ...
and before the solar nebula's formation. Examples of embedded elements in cosmic dust are GEMS, chondrules, and CAIs.


From the solar nebula to Earth

The arrows in the adjacent diagram show one possible path from a collected interplanetary dust particle back to the early stages of the solar nebula. We can follow the trail to the right in the diagram to the IDPs that contain the most volatile and primitive elements. The trail takes us first from interplanetary dust particles to chondritic interplanetary dust particles. Planetary scientists classify chondritic IDPs in terms of their diminishing degree of oxidation so that they fall into three major groups: the carbonaceous, the ordinary, and the enstatite chondrites. As the name implies, the carbonaceous chondrites are rich in carbon, and many have anomalies in the isotopic abundances of H, C, N, and O. From the carbonaceous chondrites, we follow the trail to the most primitive materials. They are almost completely oxidized and contain the lowest condensation temperature elements ("volatile" elements) and the largest amount of organic compounds. Therefore, dust particles with these elements are thought to have been formed in the early life of the Solar System. The volatile elements have never seen temperatures above about 500 K, therefore, the IDP grain "matrix" consists of some very primitive Solar System material. Such a scenario is true in the case of comet dust. The provenance of the small fraction that is stardust (see above) is quite different; these refractory interstellar minerals thermally condense within stars, become a small component of interstellar matter, and therefore remain in the presolar planetary disk. Nuclear damage tracks are caused by the ion flux from solar flares.
Solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
ions impacting on the particle's surface produce amorphous radiation damaged rims on the particle's surface. And spallogenic nuclei are produced by galactic and solar cosmic rays. A dust particle that originates in the Kuiper Belt at 40 AU would have many more times the density of tracks, thicker amorphous rims and higher integrated doses than a dust particle originating in the main-asteroid belt. Based on 2012 computer model studies, the complex organic molecules necessary for
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
( extraterrestrial organic molecules) may have formed in the
protoplanetary disk A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are sim ...
of dust grains surrounding the Sun before the formation of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. According to the computer studies, this same process may also occur around other
stars A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of ...
that acquire
planets A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets by the most restrictive definition of the te ...
. In September 2012, NASA scientists reported that polycyclic aromatic hydrocarbons (PAHs), subjected to interstellar medium (ISM) conditions, are transformed, through
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or Saturated ...
, oxygenation and hydroxylation, to more complex organics – "a step along the path toward
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
and
nucleotides Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
, the raw materials of
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
and
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
, respectively". Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice
grains A grain is a small, hard, dry fruit ( caryopsis) – with or without an attached hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and le ...
, particularly the outer regions of cold, dense clouds or the upper molecular layers of
protoplanetary disks A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may not be considered an accretion disk; while the two are si ...
." In February 2014,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
announced a greatly upgraded database for detecting and monitoring polycyclic aromatic hydrocarbons (PAHs) in the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
. According to
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
scientists, over 20% of the
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
in the Universe may be associated with PAHs, possible starting materials for the formation of
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
. PAHs seem to have been formed shortly after the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
, are abundant in the Universe, and are associated with new stars and
exoplanets An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first detec ...
. In March 2015, NASA scientists reported that, for the first time, complex
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
and
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
organic compound Some chemical authorities define an organic compound as a chemical compound that contains a carbon–hydrogen or carbon–carbon bond; others consider an organic compound to be any chemical compound that contains carbon. For example, carbon-co ...
s of
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
, including
uracil Uracil () (nucleoside#List of nucleosides and corresponding nucleobases, symbol U or Ura) is one of the four nucleotide bases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via ...
,
cytosine Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
and
thymine Thymine () (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine ...
, have been formed in the laboratory under outer space conditions, using starting chemicals, such as
pyrimidine Pyrimidine (; ) is an aromatic, heterocyclic, organic compound similar to pyridine (). One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring. The oth ...
, found in
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), the most carbon-rich chemical found in the
Universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, may have been formed in red giants or in interstellar dust and gas clouds, according to the scientists.


Some "dusty" clouds in the universe

The Solar System has its own interplanetary dust cloud, as do extrasolar systems. There are different types of nebulae with different physical causes and processes: diffuse nebula, infrared (IR) reflection nebula, supernova remnant,
molecular cloud A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
, HII regions,
photodissociation region In astrophysics, photodissociation regions (or photon-dominated regions, PDRs) are predominantly neutral regions of the interstellar medium in which far ultraviolet photons strongly influence the gas chemistry and act as the most important source ...
s, and dark nebula. Distinctions between those types of nebula are that different radiation processes are at work. For example, H II regions, like the
Orion Nebula The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the Orion (constellation), constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It ...
, where a lot of star-formation is taking place, are characterized as thermal emission nebulae. Supernova remnants, on the other hand, like the
Crab Nebula The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus (constellation), Taurus. The common name comes from a drawing that somewhat resembled a crab with arm ...
, are characterized as nonthermal emission ( synchrotron radiation). Some of the better known dusty regions in the Universe are the diffuse nebulae in the Messier catalog, for example: M1, M8, M16, M17, M20, M42, M43. Some larger dust catalogs are Sharpless (1959) A Catalogue of HII Regions, Lynds (1965) Catalogue of Bright Nebulae, Lynds (1962) Catalogue of Dark Nebulae, van den Bergh (1966) Catalogue of Reflection Nebulae, Green (1988) Rev. Reference Cat. of Galactic SNRs, The National Space Sciences Data Center (NSSDC), and CDS Online Catalogs.


Dust sample return

The Discovery program's ''Stardust'' mission, was launched on 7 February 1999 to collect samples from the coma of comet Wild 2, as well as samples of cosmic dust. It returned samples to Earth on 15 January 2006. In 2007, the recovery of particles of interstellar dust from the samples was announced.


Dust particles on Earth

In 2017, Genge et al published a paper about "urban collection" of dust particles on Earth. The team were able to collect 500 micrometeorites from rooftops. Dust was collected in Oslo and in Paris, and "all particles are silicate-dominated (S type) cosmic spherules with subspherical shapes that form by melting during atmospheric entry and consist of quench crystals of magnesian olivine, relict crystals of forsterite, and iron-bearing olivine within glass". In the UK, scientists look for micrometeorites on the rooftops of cathedrals, like
Canterbury Cathedral Canterbury Cathedral is the cathedral of the archbishop of Canterbury, the spiritual leader of the Church of England and symbolic leader of the worldwide Anglican Communion. Located in Canterbury, Kent, it is one of the oldest Christianity, Ch ...
and Rochester Cathedral. Currently 40,000 tons of cosmic dust fall to Earth each year.


See also

* Accretion *
Astrochemistry Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar Syst ...
* Atomic and molecular astrophysics * Cosmochemistry * Extraterrestrial materials *
List of interstellar and circumstellar molecules This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has ...
*
Micrometeoroid A micrometeoroid is a tiny meteoroid: a small particle of rock in space, usually weighing less than a gram. A micrometeorite is such a particle that survives passage through Earth's atmosphere and reaches Earth's surface. The term "micrometeoro ...
* Tanpopo, a mission that collected cosmic dust in low Earth orbit * WR 140, a prototypical cosmic dust factory


References


Further reading

*


External links


Cosmic Dust GroupEvidence for interstellar origin of seven dust particles collected by the Stardust spacecraft
{{DEFAULTSORT:Cosmic Dust Astrobiology Astrochemistry Extragalactic astronomy Galactic astronomy Planetary science