HOME

TheInfoList



OR:

In
semiconductor technology A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
, copper interconnects are interconnects made of copper. They are used in
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s (ICs) to reduce
propagation delay Propagation delay is the time duration taken for a signal to reach its destination. It can relate to networking, electronics or physics. ''Hold time'' is the minimum interval required for the logic level to remain on the input after triggering e ...
s and
power consumption Electric energy consumption is the form of energy consumption that uses electrical energy. Electric energy consumption is the actual energy demand made on existing electricity supply for transportation, residential, industrial, commercial, and o ...
. Since copper is a better conductor than
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, ICs using copper for their interconnects can have interconnects with narrower dimensions, and use less energy to pass electricity through them. Together, these effects lead to ICs with better performance. They were first introduced by IBM, with assistance from
Motorola Motorola, Inc. () was an American Multinational corporation, multinational telecommunications company based in Schaumburg, Illinois, United States. After having lost $4.3 billion from 2007 to 2009, the company split into two independent p ...
, in 1997. The transition from aluminium to copper required significant developments in fabrication techniques, including radically different methods for patterning the metal as well as the introduction of barrier metal layers to isolate the silicon from potentially damaging copper atoms.


Patterning

Although some form of volatile copper compound has been known to exist since 1947, with more discovered as the century progressed, none were in industrial use, so copper could not be patterned by the previous techniques of photoresist masking and
plasma etching Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot (in pulses) at a sample. The plasma source, known as etch speci ...
that had been used with great success with aluminium. The inability to plasma etch copper called for a drastic rethinking of the metal patterning process and the result of this rethinking was a process referred to as an ''additive patterning'', also known as a "Damascene" or "dual-Damascene" process by analogy to a traditional technique of metal inlaying. In this process, the underlying silicon oxide insulating layer is patterned with open trenches where the conductor should be. A thick coating of copper that significantly overfills the trenches is deposited on the insulator, and chemical-mechanical planarization (CMP) is used to remove the copper (known as ''overburden'') that extends above the top of the insulating layer. Copper sunken within the trenches of the insulating layer is not removed and becomes the patterned conductor. Damascene processes generally form and fill a single feature with copper per Damascene stage. Dual-Damascene processes generally form and fill two features with copper at once, e.g., a trench overlying a
via Via or VIA may refer to the following: Science and technology * MOS Technology 6522, Versatile Interface Adapter * ''Via'' (moth), a genus of moths in the family Noctuidae * Via (electronics), a through-connection * VIA Technologies, a Taiwan ...
may both be filled with a single copper deposition using dual-Damascene. With successive layers of insulator and copper, a multilayer interconnect structure is created. The number of layers depends on the IC's function, 10 or more metal layers are possible. Without the ability of CMP to remove the copper coating in a planar and uniform fashion, and without the ability of the CMP process to stop repeatably at the copper-insulator interface, this technology would not be realizable.


Barrier metal

A
barrier metal A diffusion barrier is a thin layer (usually micrometres thick) of metal usually placed between two other metals. It is done to act as a barrier to protect either one of the metals from corrupting the other.. Adhesion of a plated metal layer to it ...
layer must completely surround all copper interconnect, since
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
of copper into surrounding materials would degrade their properties. For instance,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
forms
deep-level trap Deep-level traps or deep-level defects are a generally undesirable type of electronic defect in semiconductors. They are "deep" in the sense that the energy required to remove an electron or hole from the trap to the valence or conduction band is ...
s when doped with copper. As the name implies, a barrier metal must limit copper diffusivity sufficiently to chemically isolate the copper conductor from the silicon below, yet have high
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
in order to maintain a good electronic contact. The thickness of the barrier film is also quite important; with too thin a layer, the copper contacts poison the very devices that they connect to; with too thick a layer, the stack of two barrier metal films and a copper conductor have a greater total resistance than aluminium interconnects, eliminating any benefit. The improvement in conductivity in going from earlier aluminium to copper based conductors was modest, and not as good as to be expected by a simple comparison of bulk conductivities of aluminium and copper. The addition of barrier metals on all four sides of the copper conductor significantly reduces the cross-sectional area of the conductor that is composed of pure, low resistance, copper. Aluminium, while requiring a thin barrier metal to promote low ohmic resistance when making a contact directly to silicon or aluminium layers, did not require barrier metals on the sides of the metal lines to isolate aluminium from the surrounding silicon oxide insulators. Therefore scientists are looking for new ways to reduce the diffusion of copper into silicon substrates without using the buffer layer. One method is to use copper-germanium alloy as the interconnect material so that buffer layer (e.g.
titanium nitride Titanium nitride (TiN; sometimes known as Tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface prope ...
) is no longer needed. Epitaxial Cu3Ge layer has been fabricated with an average resistivity of 6 ± 1 μΩ cm and work function of ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to copper.


Electromigration

Resistance to
electromigration Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms. The effect is important in applications where high direc ...
, the process by which a metal conductor changes shape under the influence of an electric current flowing through it and which eventually leads to the breaking of the conductor, is significantly better with copper than with aluminium. This improvement in electromigration resistance allows higher currents to flow through a given size copper conductor compared to aluminium. The combination of a modest increase in conductivity along with this improvement in electromigration resistance was to prove highly attractive. The overall benefits derived from these performance improvements were ultimately enough to drive full-scale investment in copper-based technologies and fabrication methods for high performance semiconductor devices, and copper-based processes continue to be the state of the art for the semiconductor industry today.


See also

*
Carbon nanotubes in interconnects In nanotechnology, carbon nanotube interconnects refer to the proposed use of carbon nanotubes in the Interconnects (integrated circuits), interconnects between the elements of an integrated circuit. Carbon nanotubes (CNTs) can be thought of as sin ...


References

{{DEFAULTSORT:Copper interconnect Integrated circuits
Interconnect In telecommunications, interconnection is the physical linking of a carrier's network with equipment or facilities not belonging to that network. The term may refer to a connection between a carrier's facilities and the equipment belonging to ...