HOME

TheInfoList



OR:

Conservation form or ''Eulerian form'' refers to an arrangement of an
equation In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
or
system of equations In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single ...
, usually representing a
hyperbolic system In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
, that emphasizes that a property represented is conserved, i.e. a type of
continuity equation A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. S ...
. The term is usually used in the context of
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such m ...
.


General form

Equations in conservation form take the form \frac + \boldsymbol \nabla \cdot \mathbf f(\xi) = 0 for any conserved quantity \xi, with a suitable function \mathbf f. An equation of this form can be transformed into an
integral equation In mathematics, integral equations are equations in which an unknown Function (mathematics), function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; ...
\frac d \int_V \xi ~ dV = -\oint_ \mathbf f(\xi) \cdot \boldsymbol \nu ~ dS using the
divergence theorem In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, reprinted in is a theorem which relates the ''flux'' of a vector field through a closed surface to the ''divergence'' of the field in the vol ...
. The integral equation states that the change rate of the integral of the quantity \xi over an arbitrary control volume V is given by the
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
\mathbf f(\xi) through the boundary of the control volume, with \boldsymbol \nu being the outer
surface normal In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at ...
through the boundary. \xi is neither produced nor consumed inside of V and is hence conserved. A typical choice for \mathbf f is \mathbf f(\xi) = \xi \mathbf u, with velocity \mathbf u, meaning that the quantity \xi flows with a given velocity field. The integral form of such equations is usually the physically more natural formulation, and the differential equation arises from differentiation. Since the integral equation can also have non-differentiable solutions, the equality of both formulations can break down in some cases, leading to
weak solution In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial differential equation is a function for which the derivatives may not all exist but which is nonetheless deemed to satisfy the equation in some precisel ...
s and severe numerical difficulties in simulations of such equations.


Example

An example of a set of equations written in conservation form are the
Euler equations 200px, Leonhard Euler (1707–1783) In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include ...
of fluid flow: \frac + \nabla\cdot(\rho\mathbf u) = 0 \frac + \nabla\cdot(\rho \mathbf u \otimes \mathbf u + p \mathbf I) = 0 \frac + \nabla\cdot(\mathbf u(E+pV)) = 0 Each of these represents the
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
, respectively.


See also

*
Conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
*
Lagrangian and Eulerian specification of the flow field __NOTOC__ In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time. Plotting the position of an indi ...


Further reading

* * Randall J. LeVeque: ''Finite Volume Methods for Hyperbolic Problems.'' Cambridge University Press, Cambridge 2002, {{ISBN, 0-521-00924-3 (''Cambridge Texts in Applied Mathematics''). Algebra Conservation equations