A condenser is an optical
lens
A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
which renders a
divergent beam from a point source into a parallel or converging beam to illuminate an object.
Condensers are an essential part of any imaging device, such as
microscopes
A microscope () is a laboratory instrument used to examine objects that are too small to be seen by the naked eye. Microscopy is the science of investigating small objects and structures using a microscope. Microscopic means being invisibl ...
,
enlarger
An enlarger is a specialized transparency projector used to produce photographic prints from film or glass negatives, or from transparencies.
Construction
All enlargers consist of a light source, normally an incandescent light bulb shining thou ...
s, slide projectors, and telescopes. The concept is applicable to all kinds of radiation undergoing optical transformation, such as electrons in
electron microscopy
An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
, neutron radiation and synchrotron radiation optics.
Microscope condenser
Condensers are located above the light source and under the sample in an upright microscope, and above the stage and below the light source in an
inverted microscope
An inverted microscope is a microscope with its light source and condenser on the top, above the stage pointing down, while the objectives and turret are below the stage pointing up. It was invented in 1850 by J. Lawrence Smith, a faculty membe ...
. They act to gather light from the microscope's light source and concentrate it into a cone of light that illuminates the specimen. The aperture and angle of the light cone must be adjusted (via the size of the diaphragm) for each different objective lens with different numerical apertures.
Condensers typically consist of a variable-aperture
diaphragm
Diaphragm may refer to:
Anatomy
* Thoracic diaphragm, a thin sheet of muscle between the thorax and the abdomen
* Pelvic diaphragm or pelvic floor, a pelvic structure
* Urogenital diaphragm or triangular ligament, a pelvic structure
Other
* Diap ...
and one or more lenses. Light from the illumination source of the microscope passes through the diaphragm and is focused by the lens(es) onto the specimen. After passing through the specimen the light diverges into an inverted cone to fill the front lens of the objective.
File:Light microscopy with and without condenser.jpg, Light microscopy with and without condenser. At low magnification, using a condenser may limit the field of view, and in such cases it is preferable to not use it. At high magnification, a condenser makes borders less marked, and is generally preferable in such cases.
File:Calcium pyrophosphate dihydrate crystals without and with condenser, annotated.jpg, An example of a situation where microscopy without condenser is preferable at high magnification is the evaluation of crystals (calcium pyrophosphate dihydrate crystal deposition disease
Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease, also known as pseudogout and pyrophosphate arthropathy, is a rheumatologic disease which is thought to be secondary to abnormal accumulation of calcium pyrophosphate dihydrate crys ...
pictured).
Types
There are three main types of microscope condenser:
# The chromatic condenser, such as the Abbe where no attempt is made to correct for spherical or
chromatic aberration
In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wave ...
. It contains two lenses that produce an image of the light source that is surrounded by a blue and red color at its edges.
# The aplanatic condenser is corrected for spherical aberration.
# The compound achromatic condenser is corrected for both spherical and chromatic aberrations.
Abbe condenser
The Abbe condenser is named for its inventor
Ernst Abbe
Ernst Karl Abbe HonFRMS (23 January 1840 – 14 January 1905) was a German physicist, optical scientist, entrepreneur, and social reformer. Together with Otto Schott and Carl Zeiss, he developed numerous optical instruments. He was also a co-ow ...
, who developed it in 1870. The Abbe condenser, which was originally designed for Zeiss, is mounted below the stage of the microscope. The condenser concentrates and controls the light that passes through the specimen prior to entering the objective. It has two controls, one which moves the Abbe condenser closer to or further from the stage, and another, the
iris diaphragm
In optics, a diaphragm is a thin opaque structure with an opening (aperture) at its center. The role of the diaphragm is to ''stop'' the passage of light, except for the light passing through the ''aperture''. Thus it is also called a stop (an a ...
, which controls the diameter of the beam of light. The controls can be used to optimize brightness, evenness of illumination, and contrast. Abbe condensers are difficult to use for magnifications of above 400X, as the aplanatic cone is only representative of a
numerical aperture (NA) of 0.6.
This condenser is composed of two lenses, a plano-convex lens somewhat larger than a hemisphere and a large bi-convex lens serving as a collecting lens to the first. The focus of the first lens is traditionally about 2mm away from the plane face coinciding with the sample plane. A pinhole cap can be used to align the optical axis of the condenser with that of the microscope. The Abbe condenser is still the basis for most modern light microscope condenser designs, even though its optical performance is poor.
["The Evolution of the Microscope". Bradbury. S, Pergamon Press, (1967)]
Aplanatic and achromatic condensers
An
aplanatic
In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strike a ...
condenser corrects for
spherical aberration
In optics, spherical aberration (SA) is a type of optical aberration, aberration found in optical systems that have elements with spherical surfaces. Lens (optics), Lenses and curved mirrors are prime examples, because this shape is easier to man ...
in the concentrated light path, while an achromatic compound condenser corrects for both spherical and
chromatic aberration
In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wave ...
.
Specialized condensers
Dark field
Dark-field microscopy (also called dark-ground microscopy) describes microscopy methods, in both light and electron microscopy, which exclude the unscattered beam from the image. As a result, the field around the specimen (i.e., where there ...
and
phase contrast Phase-contrast imaging is a method of imaging that has a range of different applications. It exploits differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, ph ...
setups are based on an Abbe, aplanatic, or achromatic condenser, but to the light path add a dark field stop or various size phase rings. These additional elements are housed in various ways. In most modern microscope (ca. 1990s–), such elements are housed in sliders that fit into a slot between the illuminator and the condenser lens. Many older microscopes house these elements in a turret-type condenser, these elements are housed in a turret below the condenser lens and rotated into place.
Specialised condensers are also used as part of
Differential Interference Contrast
Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples. DIC works on the p ...
and
Hoffman Modulation Contrast systems, which aim to improve contrast and visibility of transparent specimens.
In
epifluorescence microscopy
A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microsc ...
, the
objective lens
In optical engineering, the objective is the optical element that gathers light from the object being observed and Focus (optics), focuses the ray (optics), light rays to produce a real image. Objectives can be a single Lens (optics), lens or mirr ...
acts not only as a magnifier for the light emitted by the
fluorescing
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
object, but also as a condenser for the
incident light
In optics a ray is an idealized geometrical model of light, obtained by choosing a curve that is perpendicular to the ''wavefronts'' of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation o ...
.
The Arlow-Abbe condenser is a modified Abbe condenser that replaces the iris diaphragm, filter holder, lamp and lamp optics with a small OLED or LCD digital display unit. The display unit allows for digitally synthesised filters for dark-field, Rheinberg, oblique and dynamic (constantly changing) illumination under direct computer control. The device was first described by Dr. Jim Arlow in Microbe Hunter magazine, issue 48.
Condensers and numerical aperture
Like objective lenses, condensers vary in their
numerical aperture
In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the proper ...
(NA). It is NA that determines
optical resolution
Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged.
An imaging system may have many individual components, including one or more lenses, and/or recording and display components. ...
, in combination with the NA of the objective. Different condensers vary in their maximum and minimum numerical aperture, and the numerical aperture of a single condenser varies depending on the diameter setting of the condenser
aperture
In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane.
An opt ...
. In order for the maximum numerical aperture (and therefore resolution) of an objective lens to be realized, the numerical aperture of the condenser must be matched to the numerical aperture of the used objective. The technique most commonly used in microscopy to optimize the light pathway between the condenser (and other illumination components of the microscope) and the objective lens is known as
Köhler illumination Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy. Köhler illumination acts to generate an even illumination of the sample and ensures that an image o ...
.
The maximum NA is limited by the refractive index of the medium between the lens and the sample. As with objective lenses, a condenser lens with a maximum numerical aperture of greater than 0.95 is designed to be used under
oil immersion
In light microscopy, oil immersion is a technique used to increase the resolving power of a microscope. This is achieved by immersing both the objective lens and the specimen in a transparent oil of high refractive index, thereby increasing the ...
(or, more rarely, under
water immersion
Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a s ...
), with a layer of immersion oil placed in contact with both the slide/coverslip and the lens of the condenser. An oil immersion condenser may typically have NA of up to 1.25. Without this oil layer, not only is maximum numerical aperture not realized, but the condenser may not be able to precisely focus light on the object. Condensers with a numerical aperture of 0.95 or less are designed to be used without oil or other fluid on the top lens and are termed dry condensers. Dual dry/immersion condensers are basically oil immersion condensers that can nonetheless focus light with the same degree of precision even without oil between the top lens and the slide.
History
The first simple condensers were introduced on pre-
achromatic microscopes in the 17th century.
Robert Hooke
Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
used a combination of a salt water filled globe and a plano-convex lens, and shows in the '
Micrographia
''Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon.'' is a historically significant book by Robert Hooke about his observations through various lenses. It w ...
' that he understands the reasons for its efficiency. Makers in the 18th century such as Benjamin Martin, Adams and Jones understood the advantage of condensing the area of the light source to that of the area of the object on the stage. This was a simple plano-convex or bi-convex lens, or sometimes a combination of lenses. With the development of the modern achromatic objective in 1829, by
Joseph Jackson Lister
Joseph Jackson Lister FRS FRMS (11 January 1786 – 24 October 1869) was an amateur British opticist and physicist and the father of The 1st Baron Lister.
Ancestry
In 1705, Thomas Lister, a farmer and maltster, of Bingley, Yorkshire, Englan ...
, the need for better condensers became increasingly apparent. By 1837, the use of the achromatic condenser was introduced in France, by Felix Dujardin, and Chevalier. English makers early took up this improvement, due to the obsession with resolving test objects such as diatoms and
Nobert ruled gratings. By the late 1840s, English makers such as Ross, Powell and Smith; all could supply highly corrected condensers on their best stands, with proper centring and focus. It is erroneously stated that these developments were purely empirical - no-one can design a good achromatic, spherically corrected condenser relying only on empirics.
On the Continent, in Germany, the corrected condenser was not considered either useful or essential, mainly due to a misunderstanding of the basic optical principles involved. Thus the leading German company,
Carl Zeiss
Carl Zeiss (; 11 September 1816 – 3 December 1888) was a German scientific instrument maker, optician and businessman. In 1846 he founded his workshop, which is still in business as Carl Zeiss AG. Zeiss gathered a group of gifted practica ...
in Jena, offered nothing more than a very poor chromatic condenser into the late 1870s. French makers, such as Nachet, provided excellent achromatic condensers on their stands. When the leading German bacteriologist,
Robert Koch
Heinrich Hermann Robert Koch ( , ; 11 December 1843 – 27 May 1910) was a German physician and microbiologist. As the discoverer of the specific causative agents of deadly infectious diseases including tuberculosis, cholera (though the Vibrio ...
, complained to
Ernst Abbe
Ernst Karl Abbe HonFRMS (23 January 1840 – 14 January 1905) was a German physicist, optical scientist, entrepreneur, and social reformer. Together with Otto Schott and Carl Zeiss, he developed numerous optical instruments. He was also a co-ow ...
that he was forced to buy a Seibert achromatic condenser for his Zeiss microscope in order to make satisfactory photographs of bacteria, Abbe produced a very good achromatic design in 1878.
References
{{reflist
Bibliography
;General
"Abbe condenser" ''Photonics Dictionary'' (abridged online edition), Pittsfield MA: Laurin Publishing, 2006.
"Abbe, Ernst" ''
Encyclopædia Britannica
The (Latin for "British Encyclopædia") is a general knowledge English-language encyclopaedia. It is published by Encyclopædia Britannica, Inc.; the company has existed since the 18th century, although it has changed ownership various time ...
''.
"Glossary of microscope terms" ''Microbus'' (website), 2003.
"Anatomy of the Microscope: Substage Condenser"by Mortimer Abramowitz and Michael W. Davidson, ''Olympus Microscopy Resource Center'', 2006.
External links
by Mortimer Abramowitz and Michael W. Davidson, ''Molecular Expressions''. (Slightly different from the version found at Olympus site.)
by Paul James, ''Micscape Magazine'' (online publication), February 2002.
Lenses
Microscope components