HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically general topology, compactness is a property that seeks to generalize the notion of a
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
and
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One such generalization is that a topological space is ''sequentially'' compact if every infinite sequence of points sampled from the space has an infinite subsequence that converges to some point of the space. The Bolzano–Weierstrass theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the closed unit interval , some of those points will get arbitrarily close to some real number in that space. For instance, some of the numbers in the sequence accumulate to 0 (while others accumulate to 1). The same set of points would not accumulate to any point of the open unit interval , so the open unit interval is not compact. Although subsets (subspaces) of Euclidean space can be compact, the entire space itself is not compact, since it is not bounded. For example, considering \mathbb^1 (the real number line), the sequence of points has no subsequence that converges to any real number. Compactness was formally introduced by Maurice Fréchet in 1906 to generalize the Bolzano–Weierstrass theorem from spaces of geometrical points to spaces of functions. The Arzelà–Ascoli theorem and the Peano existence theorem exemplify applications of this notion of compactness to classical analysis. Following its initial introduction, various equivalent notions of compactness, including
sequential compactness In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notio ...
and limit point compactness, were developed in general metric spaces. In general topological spaces, however, these notions of compactness are not necessarily equivalent. The most useful notion — and the standard definition of the unqualified term ''compactness'' — is phrased in terms of the existence of finite families of open sets that " cover" the space in the sense that each point of the space lies in some set contained in the family. This more subtle notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of finite sets. In spaces that are compact in this sense, it is often possible to patch together information that holds locally — that is, in a neighborhood of each point — into corresponding statements that hold throughout the space, and many theorems are of this character. The term compact set is sometimes used as a synonym for compact space, but also often refers to a
compact subspace In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e ...
of a topological space.


Historical development

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano (
1817 Events January–March * January 1 – Sailing through the Sandwich Islands, Otto von Kotzebue discovers New Year Island. * January 19 – An army of 5,423 soldiers, led by General José de San Martín, starts crossing the ...
) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a limit point. Bolzano's proof relied on the method of bisection: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts — until it closes down on the desired limit point. The full significance of
Bolzano's theorem In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two impor ...
, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by Karl Weierstrass. In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà. The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s, the precise conclusion of which was that it was possible to extract a
uniformly convergent In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitra ...
sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
and Erhard Schmidt. For a certain class of Green's functions coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of mean convergence — or convergence in what would later be dubbed a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
. This ultimately led to the notion of a compact operator as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in
1906 Events January–February * January 12 – Persian Constitutional Revolution: A nationalistic coalition of merchants, religious leaders and intellectuals in Persia forces the shah Mozaffar ad-Din Shah Qajar to grant a constitution, ...
, had distilled the essence of the Bolzano–Weierstrass property and coined the term ''compactness'' to refer to this general phenomenon (he used the term already in his 1904 paper which led to the famous 1906 thesis). However, a different notion of compactness altogether had also slowly emerged at the end of the 19th century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870, Eduard Heine showed that a
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
defined on a closed and bounded interval was in fact uniformly continuous. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by Émile Borel (
1895 Events January–March * January 5 – Dreyfus affair: French officer Alfred Dreyfus is stripped of his army rank, and sentenced to life imprisonment on Devil's Island. * January 12 – The National Trust for Places of Histor ...
), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue (
1904 Events January * January 7 – The distress signal ''CQD'' is established, only to be replaced 2 years later by ''SOS''. * January 8 – The Blackstone Library is dedicated, marking the beginning of the Chicago Public Library system. * ...
). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers. This property was significant because it allowed for the passage from local information about a set (such as the continuity of a function) to global information about the set (such as the uniform continuity of a function). This sentiment was expressed by , who also exploited it in the development of the integral now bearing his name. Ultimately, the Russian school of point-set topology, under the direction of Pavel Alexandrov and Pavel Urysohn, formulated Heine–Borel compactness in a way that could be applied to the modern notion of a topological space. showed that the earlier version of compactness due to Fréchet, now called (relative)
sequential compactness In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notio ...
, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.


Basic examples

Any finite space is compact; a finite subcover can be obtained by selecting, for each point, an open set containing it. A nontrivial example of a compact space is the (closed) unit interval of real numbers. If one chooses an infinite number of distinct points in the unit interval, then there must be some
accumulation point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contai ...
in that interval. For instance, the odd-numbered terms of the sequence get arbitrarily close to 0, while the even-numbered ones get arbitrarily close to 1. The given example sequence shows the importance of including the boundary points of the interval, since the limit points must be in the space itself — an open (or half-open) interval of the real numbers is not compact. It is also crucial that the interval be
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
, since in the interval , one could choose the sequence of points , of which no sub-sequence ultimately gets arbitrarily close to any given real number. In two dimensions, closed disks are compact since for any infinite number of points sampled from a disk, some subset of those points must get arbitrarily close either to a point within the disc, or to a point on the boundary. However, an open disk is not compact, because a sequence of points can tend to the boundary — without getting arbitrarily close to any point in the interior. Likewise, spheres are compact, but a sphere missing a point is not since a sequence of points can still tend to the missing point, thereby not getting arbitrarily close to any point ''within'' the space. Lines and planes are not compact, since one can take a set of equally-spaced points in any given direction without approaching any point.


Definitions

Various definitions of compactness may apply, depending on the level of generality. A subset of Euclidean space in particular is called compact if it is
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
and
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
. This implies, by the Bolzano–Weierstrass theorem, that any infinite sequence from the set has a subsequence that converges to a point in the set. Various equivalent notions of compactness, such as
sequential compactness In mathematics, a topological space ''X'' is sequentially compact if every sequence of points in ''X'' has a convergent subsequence converging to a point in X. Every metric space is naturally a topological space, and for metric spaces, the notio ...
and limit point compactness, can be developed in general metric spaces. In contrast, the different notions of compactness are not equivalent in general topological spaces, and the most useful notion of compactness — originally called ''bicompactness'' — is defined using covers consisting of open sets (see ''Open cover definition'' below). That this form of compactness holds for closed and bounded subsets of Euclidean space is known as the Heine–Borel theorem. Compactness, when defined in this manner, often allows one to take information that is known locally — in a neighbourhood of each point of the space — and to extend it to information that holds globally throughout the space. An example of this phenomenon is Dirichlet's theorem, to which it was originally applied by Heine, that a continuous function on a compact interval is uniformly continuous; here, continuity is a local property of the function, and uniform continuity the corresponding global property.


Open cover definition

Formally, a topological space is called ''compact'' if each of its open covers has a finite subcover. That is, is compact if for every collection of open subsets of such that :X = \bigcup_x, there is a finite subcollection ⊆ such that :X = \bigcup_ x\ . Some branches of mathematics such as
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, typically influenced by the French school of Bourbaki, use the term ''quasi-compact'' for the general notion, and reserve the term ''compact'' for topological spaces that are both Hausdorff and ''quasi-compact''. A compact set is sometimes referred to as a ''compactum'', plural ''compacta''.


Compactness of subsets

A subset of a topological space is said to be compact if it is compact as a subspace (in the subspace topology). That is, is compact if for every arbitrary collection of open subsets of such that :K \subseteq \bigcup_ c\ , there is a finite subcollection ⊆ such that :K \subseteq \bigcup_ c\ . Compactness is a "topological" property. That is, if K \subset Z \subset Y, with subset equipped with the subspace topology, then is compact in if and only if is compact in .


Characterization

If is a topological space then the following are equivalent: # is compact; i.e., every open cover of has a finite subcover. # has a sub-base such that every cover of the space, by members of the sub-base, has a finite subcover (
Alexander's sub-base theorem In topology, a subbase (or subbasis, prebase, prebasis) for a topological space X with topology T is a subcollection B of T that generates T, in the sense that T is the smallest topology containing B. A slightly different definition is used by so ...
). # is Lindelöf and countably compact. # Any collection of closed subsets of with the finite intersection property has nonempty intersection. # Every net on has a convergent subnet (see the article on nets for a proof). # Every filter on has a convergent refinement. # Every net on has a cluster point. # Every filter on has a cluster point. # Every ultrafilter on converges to at least one point. # Every infinite subset of has a
complete accumulation point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contai ...
. # For every topological space , the projection X \times Y \to Y is a closed mapping (see proper map). Bourbaki defines a compact space (quasi-compact space) as a topological space where each filter has a cluster point (i.e., 8. in the above).


Euclidean space

For any
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of Euclidean space, is compact if and only if it is
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
and
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
; this is the Heine–Borel theorem. As a Euclidean space is a metric space, the conditions in the next subsection also apply to all of its subsets. Of all of the equivalent conditions, it is in practice easiest to verify that a subset is closed and bounded, for example, for a closed interval or closed -ball.


Metric spaces

For any metric space , the following are equivalent (assuming
countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where ...
): # is compact. # is complete and totally bounded (this is also equivalent to compactness for uniform spaces). # is sequentially compact; that is, every sequence in has a convergent subsequence whose limit is in (this is also equivalent to compactness for first-countable uniform spaces). # is limit point compact (also called weakly countably compact); that is, every infinite subset of has at least one limit point in . # is countably compact; that is, every countable open cover of has a finite subcover. # is an image of a continuous function from the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
. # Every decreasing nested sequence of nonempty closed subsets in has a nonempty intersection. # Every increasing nested sequence of proper open subsets in fails to cover . A compact metric space also satisfies the following properties: # Lebesgue's number lemma: For every open cover of , there exists a number such that every subset of of diameter < is contained in some member of the cover. # is
second-countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
, separable and Lindelöf – these three conditions are equivalent for metric spaces. The converse is not true; e.g., a countable discrete space satisfies these three conditions, but is not compact. # is closed and bounded (as a subset of any metric space whose restricted metric is ). The converse may fail for a non-Euclidean space; e.g. the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
equipped with the discrete metric is closed and bounded but not compact, as the collection of all singletons of the space is an open cover which admits no finite subcover. It is complete but not totally bounded.


Ordered Spaces

For an ordered space (i.e. a totally ordered set equipped with the order topology), the following are equivalent: # is compact. # Every subset of has a supremum (i.e. a least upper bound) in . # Every subset of has an infimum (i.e. a greatest lower bound) in . # Every nonempty closed subset of has a maximum and a minimum element. An ordered space satisfying (any one of) these conditions is called a complete lattice. In addition, the following are equivalent for all ordered spaces , and (assuming
countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where ...
) are true whenever is compact. (The converse in general fails if is not also metrizable.): # Every sequence in has a subsequence that converges in . # Every monotone increasing sequence in converges to a unique limit in . # Every monotone decreasing sequence in converges to a unique limit in . # Every decreasing nested sequence of nonempty closed subsets ⊇ ⊇ ... in has a nonempty intersection. # Every increasing nested sequence of proper open subsets ⊆ ⊆ ... in fails to cover .


Characterization by continuous functions

Let be a topological space and the ring of real continuous functions on . For each , the evaluation map \operatorname_p\colon C(X)\to \mathbb given by is a ring homomorphism. The kernel of is a maximal ideal, since the residue field is the field of real numbers, by the first isomorphism theorem. A topological space is pseudocompact if and only if every maximal ideal in has residue field the real numbers. For completely regular spaces, this is equivalent to every maximal ideal being the kernel of an evaluation homomorphism. There are pseudocompact spaces that are not compact, though. In general, for non-pseudocompact spaces there are always maximal ideals in such that the residue field is a ( non-Archimedean) hyperreal field. The framework of non-standard analysis allows for the following alternative characterization of compactness: a topological space is compact if and only if every point of the natural extension is infinitely close to a point of (more precisely, is contained in the monad of ).


Hyperreal definition

A space is compact if its hyperreal extension (constructed, for example, by the ultrapower construction) has the property that every point of is infinitely close to some point of . For example, an open real interval is not compact because its hyperreal extension contains infinitesimals, which are infinitely close to 0, which is not a point of .


Sufficient conditions

* A closed subset of a compact space is compact. * A finite union of compact sets is compact. * A continuous image of a compact space is compact. * The intersection of any non-empty collection of compact subsets of a Hausdorff space is compact (and closed); ** If is not Hausdorff then the intersection of two compact subsets may fail to be compact (see footnote for example). * The product of any collection of compact spaces is compact. (This is Tychonoff's theorem, which is equivalent to the axiom of choice.) * In a metrizable space, a subset is compact if and only if it is sequentially compact (assuming
countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where ...
) * A finite set endowed with any topology is compact.


Properties of compact spaces

* A compact subset of a Hausdorff space is closed. ** If is not Hausdorff then a compact subset of may fail to be a closed subset of (see footnote for example). ** If is not Hausdorff then the closure of a compact set may fail to be compact (see footnote for example). * In any topological vector space (TVS), a compact subset is complete. However, every non-Hausdorff TVS contains compact (and thus complete) subsets that are ''not'' closed. * If and are disjoint compact subsets of a Hausdorff space , then there exist disjoint open set and in such that and . * A continuous bijection from a compact space into a Hausdorff space is a homeomorphism. * A compact Hausdorff space is normal and
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
. * If a space is compact and Hausdorff, then no finer topology on is compact and no coarser topology on is Hausdorff. * If a subset of a metric space is compact then it is -bounded.


Functions and compact spaces

Since a continuous image of a compact space is compact, the extreme value theorem holds for such spaces: a continuous real-valued function on a nonempty compact space is bounded above and attains its supremum. (Slightly more generally, this is true for an upper semicontinuous function.) As a sort of converse to the above statements, the pre-image of a compact space under a proper map is compact.


Compactifications

Every topological space is an open dense subspace of a compact space having at most one point more than , by the Alexandroff one-point compactification. By the same construction, every
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
Hausdorff space is an open dense subspace of a compact Hausdorff space having at most one point more than .


Ordered compact spaces

A nonempty compact subset of the real numbers has a greatest element and a least element. Let be a simply ordered set endowed with the order topology. Then is compact if and only if is a
complete lattice In mathematics, a complete lattice is a partially ordered set in which ''all'' subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a ''conditionally complete lattice.'' ...
(i.e. all subsets have suprema and infima).


Examples

* Any
finite topological space In mathematics, a finite topological space is a topological space for which the underlying set (mathematics), point set is finite set, finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are ...
, including the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
, is compact. More generally, any space with a
finite topology Finite topology is a mathematical concept which has several different meanings. Finite topological space A finite topological space is a topological space, the underlying set of which is finite. In endomorphism rings If ''A'' and ''B'' are a ...
(only finitely many open sets) is compact; this includes in particular the trivial topology. * Any space carrying the cofinite topology is compact. * Any
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
Hausdorff space can be turned into a compact space by adding a single point to it, by means of Alexandroff one-point compactification. The one-point compactification of \mathbb is homeomorphic to the circle ; the one-point compactification of \mathbb^2 is homeomorphic to the sphere . Using the one-point compactification, one can also easily construct compact spaces which are not Hausdorff, by starting with a non-Hausdorff space. * The right order topology or left order topology on any bounded totally ordered set is compact. In particular, Sierpiński space is compact. * No
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
with an infinite number of points is compact. The collection of all singletons of the space is an open cover which admits no finite subcover. Finite discrete spaces are compact. * In \mathbb carrying the lower limit topology, no uncountable set is compact. * In the cocountable topology on an uncountable set, no infinite set is compact. Like the previous example, the space as a whole is not
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
but is still Lindelöf. * The closed unit interval is compact. This follows from the Heine–Borel theorem. The open interval is not compact: the open cover \left( \frac, 1 - \frac \right) for does not have a finite subcover. Similarly, the set of '' rational numbers'' in the closed interval is not compact: the sets of rational numbers in the intervals \left , \frac - \frac\righttext\left frac + \frac, 1\right/math> cover all the rationals in , 1for but this cover does not have a finite subcover. Here, the sets are open in the subspace topology even though they are not open as subsets of \mathbb. * The set \mathbb of all real numbers is not compact as there is a cover of open intervals that does not have a finite subcover. For example, intervals , where takes all integer values in , cover \mathbb but there is no finite subcover. * On the other hand, the
extended real number line In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra ...
carrying the analogous topology ''is'' compact; note that the cover described above would never reach the points at infinity and thus would ''not'' cover the extended real line. In fact, the set has the homeomorphism to ��1, 1of mapping each infinity to its corresponding unit and every real number to its sign multiplied by the unique number in the positive part of interval that results in its absolute value when divided by one minus itself, and since homeomorphisms preserve covers, the Heine-Borel property can be inferred. * For every natural number , the -sphere is compact. Again from the Heine–Borel theorem, the closed unit ball of any finite-dimensional normed vector space is compact. This is not true for infinite dimensions; in fact, a normed vector space is finite-dimensional if and only if its closed unit ball is compact. * On the other hand, the closed unit ball of the dual of a normed space is compact for the weak-* topology. ( Alaoglu's theorem) * The
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. Thr ...
is compact. In fact, every compact metric space is a continuous image of the Cantor set. * Consider the set of all functions from the real number line to the closed unit interval, and define a topology on so that a sequence \ in converges towards if and only if \ converges towards for all real numbers . There is only one such topology; it is called the topology of pointwise convergence or the product topology. Then is a compact topological space; this follows from the Tychonoff theorem. * Consider the set of all functions satisfying the Lipschitz condition for all . Consider on the metric induced by the uniform distance d(f, g) = \sup_ , f(x) - g(x), . Then by Arzelà–Ascoli theorem the space is compact. * The spectrum of any bounded linear operator on a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
is a nonempty compact subset of the complex numbers \mathbb. Conversely, any compact subset of \mathbb arises in this manner, as the spectrum of some bounded linear operator. For instance, a diagonal operator on the Hilbert space \ell^2 may have any compact nonempty subset of \mathbb as spectrum.


Algebraic examples

* Compact groups such as an
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
are compact, while groups such as a general linear group are not. * Since the -adic integers are
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to the Cantor set, they form a compact set. * The spectrum of any
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
with the Zariski topology (that is, the set of all prime ideals) is compact, but never Hausdorff (except in trivial cases). In algebraic geometry, such topological spaces are examples of quasi-compact schemes, "quasi" referring to the non-Hausdorff nature of the topology. * The spectrum of a Boolean algebra is compact, a fact which is part of the
Stone representation theorem In mathematics, Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to a certain field of sets. The theorem is fundamental to the deeper understanding of Boolean algebra that emerged in the first h ...
. Stone spaces, compact totally disconnected Hausdorff spaces, form the abstract framework in which these spectra are studied. Such spaces are also useful in the study of
profinite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
s. * The
structure space In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach spa ...
of a commutative unital Banach algebra is a compact Hausdorff space. * The Hilbert cube is compact, again a consequence of Tychonoff's theorem. * A
profinite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
(e.g. Galois group) is compact.


See also

* Compactly generated space * Compactness theorem * Eberlein compactum * Exhaustion by compact sets *
Lindelöf space In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of '' compactness'', which requires the existence of a ''finite'' sub ...
* Metacompact space * Noetherian topological space *
Orthocompact space In mathematics, in the field of general topology, a topological space is said to be orthocompact if every open cover has an interior-preserving open refinement. That is, given an open cover of the topological space, there is a refinement that is a ...
* Paracompact space * Precompact set - also called '' totally bounded'' *
Relatively compact subspace In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) of a topological space is a subset whose closure is compact. Properties Every subset of a compact topological space is relatively compact (since ...
* Totally bounded


Notes


References


Bibliography

* *. *. * (''Purely analytic proof of the theorem that between any two values which give results of opposite sign, there lies at least one real root of the equation''). * * * * * * * * * * * * * * * . * *


External links

* * ---- {{DEFAULTSORT:Compact Space Compactness (mathematics) General topology Properties of topological spaces Topology