HOME

TheInfoList



OR:

A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make
collimated light A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffractio ...
or parallel rays), or to cause the spatial cross section of the beam to become smaller (beam limiting device).


History

The English physicist Henry Kater was the inventor of the floating collimator, which rendered a great service to practical astronomy. He reported about his invention in January 1825. In his report, Kater mentioned previous work in this area by
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refe ...
and Friedrich Bessel.


Optical collimators

In
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultra ...
, a collimator may consist of a curved mirror or
lens A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'' ...
with some type of light source and/or an image at its focus. This can be used to replicate a target focused at
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions am ...
with little or no parallax. In
lighting Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing dayli ...
, collimators are typically designed using the principles of nonimaging optics. Optical collimators can be used to calibrate other optical devices, to check if all elements are aligned on the optical axis, to set elements at proper focus, or to align two or more devices such as
binoculars Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes ( binocular vision) when viewing distant objects. Most binoculars are sized to be hel ...
or gun barrels and gunsights. A surveying camera may be collimated by setting its fiduciary markers so that they define the principal point, as in
photogrammetry Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant ima ...
. Optical collimators are also used as gun sights in the collimator sight, which is a simple optical collimator with a cross hair or some other reticle at its focus. The viewer only sees an image of the reticle. They have to use it either with both eyes open and one eye looking into the collimator sight, with one eye open and moving the head to alternately see the sight and the target, or with one eye to partially see the sight and target at the same time. Elementary optics and applications to fire control instruments: May, 1921 By United States. Army. Ordnance Dept, page 84
/ref> Adding a beam splitter allows the viewer to see the reticle and the field of view, making a reflector sight. Collimators may be used with laser diodes and CO2 cutting lasers. Proper collimation of a laser source with long enough coherence length can be verified with a shearing interferometer.


X-ray, gamma ray, and neutron collimators

In
X-ray optics X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-r ...
,
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nucleus, atomic nuclei. It consists of the shortest wavelength electromagnetic wav ...
optics, and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
optics, a collimator is a device that filters a stream of rays so that only those traveling parallel to a specified direction are allowed through. Collimators are used for X-ray, gamma-ray, and neutron imaging because it is difficult to focus these types of radiation into an image using lenses, as is routine with
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
at optical or near-optical wavelengths. Collimators are also used in radiation detectors in nuclear power stations to make them directionally sensitive.


Applications

The figure to the right illustrates how a Söller collimator is used in neutron and X-ray machines. The upper panel shows a situation where a collimator is not used, while the lower panel introduces a collimator. In both panels the source of radiation is to the right, and the image is recorded on the gray plate at the left of the panels. Without a collimator, rays from all directions will be recorded; for example, a ray that has passed through the top of the specimen (to the right of the diagram) but happens to be travelling in a downwards direction may be recorded at the bottom of the plate. The resultant image will be so blurred and indistinct as to be useless. In the lower panel of the figure, a collimator has been added (blue bars). This may be a sheet of lead or other material opaque to the incoming radiation with many tiny holes bored through it or in the case of neutrons it can be a sandwich arrangement (which can be up to several feet long - see ENGIN-X) with many layers alternating between neutron absorbing material (e.g. gadolinium) with neutron transmitting material. This can be something simple e.g. air. or if mechanical strength is needed then aluminium may be used. If this forms part of a rotating assembly, the sandwich may be curved. This allows energy selection in addition to collimation - the curvature of the collimator and its rotation will present a straight path only to one energy of neutrons. Only rays that are travelling nearly parallel to the holes will pass through them—any others will be absorbed by hitting the plate surface or the side of a hole. This ensures that rays are recorded in their proper place on the plate, producing a clear image. For industrial radiography using gamma radiation sources such as iridium-192 or
cobalt-60 Cobalt-60 (60Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2713 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activation of bulk samples of the monoisot ...
, a collimator (beam limiting device) allows the radiographer to control the exposure of radiation to expose a film and create a radiograph, to inspect materials for defects. A collimator in this instance is most commonly made of
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
, and is rated according to how many half value layers it contains, i.e., how many times it reduces undesirable radiation by half. For instance, the thinnest walls on the sides of a 4 HVL tungsten collimator thick will reduce the intensity of radiation passing through them by 88.5%. The shape of these collimators allows emitted radiation to travel freely toward the specimen and the x-ray film, while blocking most of the radiation that is emitted in undesirable directions such as toward workers.


Limitations

Although collimators improve resolution, they also reduce intensity by blocking incoming radiation, which is undesirable for remote sensing instruments that require high sensitivity. For this reason, the gamma ray spectrometer on the Mars Odyssey is a non-collimated instrument. Most lead collimators let less than 1% of incident photons through. Attempts have been made to replace collimators with electronic analysis.


In radiation therapy

Collimators (beam limiting devices) are used in linear accelerators used for
radiotherapy Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Ra ...
treatments. They help to shape the beam of radiation emerging from the machine and can limit the maximum field size of a beam. The treatment head of a linear accelerator consists of both a primary and secondary collimator. The primary collimator is positioned after the electron beam has reached a vertical orientation. When using photons, it is placed after the beam has passed through the X-ray target. The secondary collimator is positioned after either a flattening filter (for photon therapy) or a scattering foil (for electron therapy). The secondary collimator consists of two jaws which can be moved to either enlarge or minimize the size of the treatment field. New systems involving multileaf collimators (MLCs) are used to further shape a beam to localise treatment fields in radiotherapy. MLCs consist of approximately 50–120 leaves of heavy, metal collimator plates which slide into place to form the desired field shape.


Computing the spatial resolution

To find the spatial resolution of a parallel hole collimator with a hole length, l, a hole diameter D and a distance to the imaged object s, the following formula can be used R_\text = D + \frac where the effective length is defined as l_\text = l - \frac Where \mu is the linear attenuation coefficient of the material from which the collimator is made.


See also

* Autocollimation * Autocollimator *
Collimated light A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffractio ...
* Nonimaging optics * Snoot in lighting


References

{{Electromagnetic spectrum Accelerator physics Neutron instrumentation Optical devices Radiology Synchrotron instrumentation X-ray instrumentation