The cokernel of a
linear mapping
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vec ...
of
vector spaces
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', can be added together and multiplied ("scaled") by numbers called ''scalars''. The operations of vector addition and sc ...
is the
quotient space of the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of by the image of . The dimension of the cokernel is called the ''corank'' of .
Cokernels are
dual to the
kernels of category theory, hence the name: the kernel is a
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
of the domain (it maps to the domain), while the cokernel is a
quotient object In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory, ...
of the codomain (it maps from the codomain).
Intuitively, given an equation that one is seeking to solve, the cokernel measures the ''constraints'' that must satisfy for this equation to have a solution – the obstructions to a solution – while the kernel measures the ''degrees of freedom'' in a solution, if one exists. This is elaborated in
intuition
Intuition is the ability to acquire knowledge without recourse to conscious reasoning or needing an explanation. Different fields use the word "intuition" in very different ways, including but not limited to: direct access to unconscious knowledg ...
, below.
More generally, the cokernel of a
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
in some
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
(e.g. a
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
between
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
s or a
bounded linear operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y.
If X and Y are normed vector ...
between
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s) is an object and a morphism such that the composition is the
zero morphism In category theory, a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object.
Definitions
Suppose C is a category, and ''f'' : ''X'' → ''Y'' is a morphism in C. The ...
of the category, and furthermore is
universal with respect to this property. Often the map is understood, and itself is called the cokernel of .
In many situations in
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, such as for
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s,
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s or
modules, the cokernel of the
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
is the
quotient
In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of by the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of . In
topological
Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
settings, such as with bounded linear operators between Hilbert spaces, one typically has to take the
closure of the image before passing to the quotient.
Formal definition
One can define the cokernel in the general framework of
category theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
. In order for the definition to make sense the category in question must have
zero morphism In category theory, a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object.
Definitions
Suppose C is a category, and ''f'' : ''X'' → ''Y'' is a morphism in C. The ...
s. The cokernel of a
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
is defined as the
coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer.
Definition
A coequalizer is the ...
of and the zero morphism .
Explicitly, this means the following. The cokernel of is an object together with a morphism such that the diagram
commutes. Moreover, the morphism must be
universal for this diagram, i.e. any other such can be obtained by composing with a unique morphism :
As with all universal constructions the cokernel, if it exists, is unique
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation "
* if and are related by , that is,
* if holds, that is,
* if the equivalence classes of and with respect to are equal.
This figure of speech ...
a unique
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
, or more precisely: if and are two cokernels of , then there exists a unique isomorphism with .
Like all coequalizers, the cokernel is necessarily an
epimorphism
In category theory, an epimorphism is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms ,
: g_1 \circ f = g_2 \circ f \implies g_1 = g_2.
Epimorphisms are categorical analo ...
. Conversely an epimorphism is called ''
normal'' (or ''conormal'') if it is the cokernel of some morphism. A category is called ''conormal'' if every epimorphism is normal (e.g. the
category of groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
Relation to other categories
The ...
is conormal).
Examples
In the
category of groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
Relation to other categories
The ...
, the cokernel of a
group homomorphism
In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that
: h(u*v) = h(u) \cdot h(v)
whe ...
is the
quotient
In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of by the
normal closure of the image of . In the case of
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s, since every
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
is normal, the cokernel is just
modulo
In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation.
Given two positive numbers and , mo ...
the image of :
:
Special cases
In a
preadditive category
In mathematics, specifically in category theory, a preadditive category is
another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab.
That is, an Ab-category C is a category such that
every h ...
, it makes sense to add and subtract morphisms. In such a category, the
coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer.
Definition
A coequalizer is the ...
of two morphisms and (if it exists) is just the cokernel of their difference:
:
In an
abelian category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.
The motivating prototypical example of an abelian category is the category o ...
(a special kind of preadditive category) the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
and
coimage In algebra, the coimage of a homomorphism
:f : A \rightarrow B
is the quotient
:\text f = A/\ker(f)
of the domain by the kernel.
The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies ...
of a morphism are given by
:
In particular, every abelian category is normal (and conormal as well). That is, every
monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y.
In the more general setting of category theory, a monomorphis ...
can be written as the kernel of some morphism. Specifically, is the kernel of its own cokernel:
:
Intuition
The cokernel can be thought of as the space of ''constraints'' that an equation must satisfy, as the space of ''obstructions'', just as the
kernel is the space of ''solutions.''
Formally, one may connect the kernel and the cokernel of a map by the
exact sequence
In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next.
Definit ...
:
These can be interpreted thus: given a linear equation to solve,
* the kernel is the space of ''solutions'' to the ''homogeneous'' equation , and its dimension is the number of ''degrees of freedom'' in solutions to , if they exist;
* the cokernel is the space of ''constraints'' on ''w'' that must be satisfied if the equation is to have a solution, and its dimension is the number of independent constraints that must be satisfied for the equation to have a solution.
The dimension of the cokernel plus the dimension of the image (the rank) add up to the dimension of the target space, as the dimension of the quotient space is simply the dimension of the space ''minus'' the dimension of the image.
As a simple example, consider the map , given by . Then for an equation to have a solution, we must have (one constraint), and in that case the solution space is , or equivalently, , (one degree of freedom). The kernel may be expressed as the subspace : the value of is the freedom in a solution. The cokernel may be expressed via the real valued map : given a vector , the value of is the ''obstruction'' to there being a solution.
Additionally, the cokernel can be thought of as something that "detects"
surjection
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
s in the same way that the kernel "detects"
injection
Injection or injected may refer to:
Science and technology
* Injective function, a mathematical function mapping distinct arguments to distinct values
* Injection (medicine), insertion of liquid into the body with a syringe
* Injection, in broadca ...
s. A map is injective if and only if its kernel is trivial, and a map is surjective if and only if its cokernel is trivial, or in other words, if .
References
*
Saunders Mac Lane
Saunders Mac Lane (August 4, 1909 – April 14, 2005), born Leslie Saunders MacLane, was an American mathematician who co-founded category theory with Samuel Eilenberg.
Early life and education
Mac Lane was born in Norwich, Connecticut, near w ...
: ''
Categories for the Working Mathematician
''Categories for the Working Mathematician'' (''CWM'') is a textbook in category theory written by American mathematician Saunders Mac Lane, who cofounded the subject together with Samuel Eilenberg. It was first published in 1971, and is based ...
'', Second Edition, 1978, p. 64
*
Emily RiehlCategory Theory in Context 2014, p. 82, p. 139 footnote 8.
{{Category theory
Abstract algebra
Category theory
Isomorphism theorems
de:Kern (Algebra)#Kokern