Choline Esters
   HOME

TheInfoList



OR:

Choline is an
essential nutrient A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
for humans and many other animals. Choline occurs as a
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
that forms various
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively cha ...
(X in the depicted formula is an undefined
counteranion image:Polystyrolsulfonat.svg, 160px, Polystyrene sulfonate, a cation-exchange resin, is typically supplied with as the counterion. In chemistry, a counterion (sometimes written as "counter ion", pronounced as such) is the ion that accompanies an ...
). Humans are capable of some ''de novo synthesis'' of choline but require additional choline in the diet to maintain health. Dietary requirements can be met by choline per se or in the form of choline
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, such as
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
. Choline is not formally classified as a
vitamin A vitamin is an organic molecule (or a set of molecules closely related chemically, i.e. vitamers) that is an Nutrient#Essential nutrients, essential micronutrient that an organism needs in small quantities for the proper functioning of its ...
despite being an essential nutrient with an
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
–like
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
and metabolism. In most animals, choline phospholipids are necessary components in
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s, in the membranes of cell
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s, and in
very low-density lipoprotein Very-low-density lipoprotein (VLDL), density relative to extracellular water, is a type of lipoprotein made by the liver. VLDL is one of the five major groups of lipoproteins (chylomicrons, VLDL, intermediate-density lipoprotein, low-density lipo ...
s. Choline is required to produce
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
– a
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
– and ''S''-adenosylmethionine (SAM), a universal
methyl In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many ...
donor. Upon methylation SAM is transformed into
homocysteine Homocysteine is a non-proteinogenic α-amino acid. It is a homologue of the amino acid cysteine, differing by an additional methylene bridge (-CH2-). It is biosynthesized from methionine by the removal of its terminal Cε methyl group. In the b ...
. Symptomatic choline deficiency causes
non-alcoholic fatty liver disease Non-alcoholic fatty liver disease (NAFLD), also known as metabolic (dysfunction) associated fatty liver disease (MAFLD), is excessive fat build-up in the liver without another clear cause such as alcohol use. There are two types; non-alcoholic ...
and muscle damage. Excessive consumption of choline (greater than 7.5 g/day) can cause
low blood pressure Hypotension is low blood pressure. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. Blood pressure is indicated by two numbers, the systolic blood pressure (the top number) and the dia ...
,
sweating Perspiration, also known as sweating, is the production of fluids secreted by the sweat glands in the skin of mammals. Two types of sweat glands can be found in humans: eccrine glands and apocrine glands. The eccrine sweat glands are distr ...
,
diarrhea Diarrhea, also spelled diarrhoea, is the condition of having at least three loose, liquid, or watery bowel movements each day. It often lasts for a few days and can result in dehydration due to fluid loss. Signs of dehydration often begin wi ...
and fish-like body odor due to
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a colorless, hygroscopic, and flammable tertiary amine. It is a gas at room temperature but is usually sold as a 40% solution in water. (It is also sold in pressurized ...
, which forms in its metabolism. Rich dietary sources of choline and choline phospholipids include
organ meats Offal (), also called variety meats, pluck or organ meats, is the organs of a butchered animal. The word does not refer to a particular list of edible organs, which varies by culture and region, but usually excludes muscle. Offal may also refer ...
and
egg yolks Among animals which produce eggs, the yolk (; also known as the vitellus) is the nutrient-bearing portion of the egg whose primary function is to supply food for the development of the embryo. Some types of egg contain no yolk, for example bec ...
,
dairy products Dairy products or milk products, also known as lacticinia, are Food product, food products made from (or containing) milk. The most common dairy animals are cow, water buffalo, dairy goat, nanny goat, and Sheep, ewe. Dairy products include commo ...
, peanuts, certain beans, nuts, seeds and
vegetables Vegetables are parts of plants that are consumed by humans or other animals as food. The original meaning is still commonly used and is applied to plants collectively to refer to all edible plant matter, including the flowers, fruits, stems, ...
with pasta and rice also contributing to choline intake in the American diet.


Chemistry

The cholines are a family of water-soluble
quaternary ammonium compound In chemistry, quaternary ammonium cations, also known as quats, are positively charged polyatomic ions of the structure , R being an alkyl group or an aryl group. Unlike the ammonium ion () and the primary, secondary, or tertiary ammonium catio ...
s. Choline is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. Choline
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. I ...
is known as choline base. It is
hygroscopic Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance ...
and thus often encountered as a colorless
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
hydrated syrup that smells of
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a colorless, hygroscopic, and flammable tertiary amine. It is a gas at room temperature but is usually sold as a 40% solution in water. (It is also sold in pressurized ...
(TMA). Aqueous solutions of choline are stable, but the compound slowly breaks down to
ethylene glycol Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic compound (a vicinal diol) with the formula . It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odo ...
,
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
s, and TMA. Choline chloride can be made by treating TMA with
2-chloroethanol 2-Chloroethanol (also called ethylene chlorohydrin or glycol chlorohydrin) is an organic chemical compound with the chemical formula HOCH2CH2Cl and the ''simplest'' beta-halohydrin (chlorohydrin). This colorless liquid has a pleasant ether-like od ...
: :(CH3)3N + ClCH2CH2OH → (CH3)3N+CH2CH2OH · Cl The 2-chloroethanol can be generated from
ethylene oxide Ethylene oxide is an organic compound with the chemical formula, formula . It is a cyclic ether and the simplest epoxide: a three-membered Ring (chemistry), ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless a ...
. Choline has historically been produced from natural sources, such as via
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of
lecithin Lecithin (, from the Greek ''lekithos'' "yolk") is a generic term to designate any group of yellow-brownish fatty substances occurring in animal and plant tissues which are amphiphilic – they attract both water and fatty substances (and so ar ...
.


Metabolism


Biosynthesis

In plants, the first step in ''de novo'' biosynthesis of choline is the
decarboxylation Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is t ...
of
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
into
ethanolamine Ethanolamine (2-aminoethanol, monoethanolamine, ETA, or MEA) is an organic chemical compound with the formula or . The molecule is bifunctional, containing both a primary amine and a primary alcohol. Ethanolamine is a colorless, viscous liquid wit ...
, which is catalyzed by a serine decarboxylase. The synthesis of choline from ethanolamine may take place in three parallel pathways, where three consecutive ''N''-methylation steps catalyzed by a methyl transferase are carried out on either the free-base, phospho-bases, or phosphatidyl-bases. The source of the methyl group is ''S''-adenosyl--methionine and ''S''-adenosyl--homocysteine is generated as a side product. In humans and most other animals, de novo synthesis of choline is via the
phosphatidylethanolamine N-methyltransferase Phosphatidylethanolamine N-methyltransferase (abbreviated PEMT) is a transferase enzyme () which converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. In humans it is encoded by the ''PEMT'' gene within the Smith– ...
(PEMT) pathway, but biosynthesis is not enough to meet human requirements. In the hepatic PEMT route,
3-phosphoglycerate 3-Phosphoglyceric acid (3PG, 3-PGA, or PGA) is the conjugate acid of 3-phosphoglycerate or glycerate 3-phosphate (GP or G3P). This glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin-Benson cycle. Th ...
(3PG) receives 2
acyl group In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an alkyl group (). In organic chemistry, the acyl group (IUPAC ...
s from
acyl-CoA Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way ...
forming a
phosphatidic acid Phosphatidic acids are anionic phospholipids important to cell signaling and direct activation of lipid-gated ion channels. Hydrolysis of phosphatidic acid gives rise to one molecule each of glycerol and phosphoric acid and two molecules of fatty ac ...
. It reacts with
cytidine triphosphate Cytidine triphosphate (CTP) is a pyrimidine nucleoside triphosphate. CTP, much like ATP, consists of a ribose sugar, and three phosphate groups. The major difference between the two molecules is the base used, which in CTP is cytosine. CTP is ...
to form cytidine diphosphate-diacylglycerol. Its
hydroxyl group In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy g ...
reacts with
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
to form
phosphatidylserine Phosphatidylserine (abbreviated Ptd-L-Ser or PS) is a phospholipid and is a component of the cell membrane. It plays a key role in cell cycle signaling, specifically in relation to apoptosis. It is a key pathway for viruses to enter cells via ap ...
which decarboxylates to
ethanolamine Ethanolamine (2-aminoethanol, monoethanolamine, ETA, or MEA) is an organic chemical compound with the formula or . The molecule is bifunctional, containing both a primary amine and a primary alcohol. Ethanolamine is a colorless, viscous liquid wit ...
and
phosphatidylethanolamine Phosphatidylethanolamine (PE) is a class of phospholipids found in biological membranes. They are synthesized by the addition of cytidine diphosphate-ethanolamine to diglycerides, releasing cytidine monophosphate. ''S''-Adenosyl methionine can s ...
(PE) forms. A PEMT enzyme moves three
methyl In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many ...
groups from three ''S''-adenosyl methionines (SAM) donors to the ethanolamine group of the phosphatidylethanolamine to form choline in the form of a phosphatidylcholine. Three ''S''-adenosylhomocysteines (SAHs) are formed as a byproduct. Choline can also be released from more complex choline containing molecules. For example,
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
s (PC) can be hydrolyzed to choline (Chol) in most cell types. Choline can also be produced by the CDP-choline route,
cytosolic The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrio ...
choline kinase Choline kinase (also known as CK, ChoK and choline phosphokinase) is an enzyme which catalyzes the first reaction in the choline pathway for phosphatidylcholine (PC) biosynthesis. This reaction involves the transfer of a phosphate group from adenos ...
s (CK) phosphorylate choline with ATP to
phosphocholine Phosphocholine is an intermediate in the synthesis of phosphatidylcholine in tissues. Phosphocholine is made in a reaction, catalyzed by choline kinase, that converts ATP and choline into phosphocholine and ADP. Phosphocholine is a molecule ...
(PChol). This happens in some cell types like liver and kidney.
Choline-phosphate cytidylyltransferase Choline-phosphate cytidylyltransferase () is an enzyme that catalysis, catalyzes the chemical reaction :CTP + choline phosphate \rightleftharpoons diphosphate + CDP-choline where the two substrate (biochemistry), substrates of this enzyme are cyt ...
s (CPCT) transform PChol to
CDP-choline Citicoline (International Nonproprietary Name, INN), also known as cytidine diphosphate-choline (CDP-Choline) or cytidine 5'-diphosphocholine is an intermediate in the generation of phosphatidylcholine from choline, a common biochemical process in ...
(CDP-Chol) with cytidine triphosphate (CTP). CDP-choline and
diglyceride A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as sur ...
are transformed to PC by diacylglycerol cholinephosphotransferase (CPT). In humans, certain PEMT-enzyme
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mi ...
s and
estrogen deficiency Hypoestrogenism, or estrogen deficiency, refers to a lower than normal level of estrogen. It is an umbrella term used to describe estrogen deficiency in various conditions. Estrogen deficiency is also associated with an increased risk of cardiov ...
(often due to
menopause Menopause, also known as the climacteric, is the time in women's lives when menstrual periods stop permanently, and they are no longer able to bear children. Menopause usually occurs between the age of 47 and 54. Medical professionals often d ...
) increase the dietary need for choline. In rodents, 70% of phosphatidylcholines are formed via the PEMT route and only 30% via the CDP-choline route. In
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, PEMT inactivation makes them completely dependent on dietary choline.


Absorption

In humans, choline is absorbed from the
intestine The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans ...
s via the
SLC44A1 Choline transporter-like protein 1 is a protein that in humans is encoded by the ''SLC44A1'' gene. See also * Cluster of differentiation The cluster of differentiation (also known as cluster of designation or classification determinant and of ...
(CTL1)
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
via
facilitated diffusion Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembra ...
governed by the choline concentration gradient and the electrical potential across the
enterocyte Enterocytes, or intestinal absorptive cells, are simple columnar epithelial cells which line the inner surface of the small and large intestines. A glycocalyx surface coat contains digestive enzymes. Microvilli on the apical surface increase its ...
membranes. SLC44A1 has limited ability to transport choline: at high concentrations part of it is left unabsorbed. Absorbed choline leaves the enterocytes via the
portal vein The portal vein or hepatic portal vein (HPV) is a blood vessel that carries blood from the gastrointestinal tract, gallbladder, pancreas and spleen to the liver. This blood contains nutrients and toxins extracted from digested contents. Approxima ...
, passes the liver and enters
systemic circulation The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
. Gut microbes degrade the unabsorbed choline to
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a colorless, hygroscopic, and flammable tertiary amine. It is a gas at room temperature but is usually sold as a 40% solution in water. (It is also sold in pressurized ...
, which is oxidized in the liver to trimethylamine ''N''-oxide.
Phosphocholine Phosphocholine is an intermediate in the synthesis of phosphatidylcholine in tissues. Phosphocholine is made in a reaction, catalyzed by choline kinase, that converts ATP and choline into phosphocholine and ADP. Phosphocholine is a molecule ...
and glycerophosphocholines are hydrolyzed via
phospholipase A phospholipase is an enzyme that hydrolyzes phospholipids into fatty acids and other lipophilic substances. Acids trigger the release of bound calcium from cellular stores and the consequent increase in free cytosolic Ca2+, an essential step in ...
s to choline, which enters the portal vein. Due to their water solubility, some of them escape unchanged to the portal vein. Fat-soluble choline-containing compounds (
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
s and
sphingomyelin Sphingomyelin (SPH, ˌsfɪŋɡoˈmaɪəlɪn) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a ethano ...
s) are either hydrolyzed by phospholipases or enter the
lymph Lymph (from Latin, , meaning "water") is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to ...
incorporated into
chylomicron Chylomicrons (from the Greek χυλός, chylos, meaning ''juice'' (of plants or animals), and micron, meaning ''small particle''), also known as ultra low-density lipoproteins (ULDL), are lipoprotein particles that consist of triglycerides (85 ...
s.


Transport

In humans, choline is transported as a free molecule in blood. Choline–containing
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s and other substances, like glycerophosphocholines, are transported in blood
lipoprotein A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid (also known as fat) molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, sur ...
s.
Blood plasma Blood plasma is a light amber-colored liquid component of blood in which blood cells are absent, but contains proteins and other constituents of whole blood in suspension. It makes up about 55% of the body's total blood volume. It is the intra ...
choline levels in healthy
fasting Fasting is the abstention from eating and sometimes drinking. From a purely physiological context, "fasting" may refer to the metabolic status of a person who has not eaten overnight (see " Breakfast"), or to the metabolic state achieved after ...
adults is 7–20 
micromoles The mole, symbol mol, is the unit of amount of substance in the International System of Units (SI). The quantity amount of substance is a measure of how many elementary entities of a given substance are in an object or sample. The mole is define ...
per liter (μmol/L) and 10 μmol/L on average. Levels are regulated, but choline intake and deficiency alters these levels. Levels are elevated for about 3 hours after choline consumption. Phosphatidylcholine levels in the plasma of fasting adults is 1.5–2.5 mmol/L. Its consumption elevates the free choline levels for about 8–12 hours, but does not affect phosphatidylcholine levels significantly. Choline is a water-soluble
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
and thus requires transporters to pass through fat-soluble
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s. Three types of choline transporters are known: *
SLC5A7 The high-affinity choline transporter (ChT) also known as solute carrier family 5 member 7 is a protein in humans that is encoded by the ''SLC5A7'' gene. It is a cell membrane transporter and carries choline into acetylcholine-synthesizing neur ...
* CTLs: CTL1 (
SLC44A1 Choline transporter-like protein 1 is a protein that in humans is encoded by the ''SLC44A1'' gene. See also * Cluster of differentiation The cluster of differentiation (also known as cluster of designation or classification determinant and of ...
), CTL2 (
SLC44A2 Choline transporter-like protein 2 is a protein that in humans is encoded by the ''SLC44A2'' gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''gen ...
) and CTL4 (
SLC44A4 Choline transporter-like protein 4 is a protein that in humans is encoded by the ''SLC44A4'' gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''gen ...
) * OCTs: OCT1 (
SLC22A1 Solute carrier family 22 member 1 is a protein that in humans is encoded by the gene ''SLC22A1''. Function Polyspecific organic cation transporters in the liver, kidney, intestine, and other organs are critical for elimination of many endogenou ...
) and OCT2 (
SLC22A2 Solute carrier family 22 member 2 (also termed ''OCT2'' or ''organic cation transporter-2'') is a protein that in humans is encoded by the ''SLC22A2'' gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to d ...
) SLC5A7s are
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
- (Na+) and ATP-dependent transporters. They have high
binding affinity In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. The etymology stems from ''ligare'', which means 'to bind'. In protein-ligand binding, the ligand is usually a mol ...
for choline, transport it primarily to
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
s and are indirectly associated with the
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
production. Their deficient function causes
hereditary Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic inform ...
weakness in the pulmonary and other muscles in humans via acetylcholine deficiency. In
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, their dysfunction results easily in death with
cyanosis Cyanosis is the change of body tissue color to a bluish-purple hue as a result of having decreased amounts of oxygen bound to the hemoglobin in the red blood cells of the capillary bed. Body tissues that show cyanosis are usually in locations ...
and
paralysis Paralysis (also known as plegia) is a loss of motor function in one or more muscles. Paralysis can also be accompanied by a loss of feeling (sensory loss) in the affected area if there is sensory damage. In the United States, roughly 1 in 50 ...
. CTL1s have moderate affinity for choline and transport it in almost all tissues, including the intestines, liver, kidneys,
placenta The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate mater ...
and mitochondria. CTL1s supply choline for
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
and trimethylglycine production. CTL2s occur especially in the mitochondria in the tongue, kidneys, muscles and heart. They are associated with the mitochondrial oxidation of choline to trimethylglycine. CTL1s and CTL2s are not associated with the acetylcholine production, but transport choline together via the blood–brain barrier. Only CTL2s occur on the brain side of the barrier. They also remove excess choline from the neurons back to blood. CTL1s occur only on the blood side of the barrier, but also on the membranes of astrocytes and neurons. OCT1s and OCT2s are not associated with the acetylcholine production. They transport choline with low affinity. OCT1s transport choline primarily in the liver and kidneys; OCT2s in kidneys and the brain.


Storage

Choline is stored in the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s and
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s as
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, and inside cells as
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
s and glycerophosphocholines.


Excretion

Even at choline doses of 2–8 g, little choline is excreted into urine in humans. Excretion happens via transporters that occur within kidneys (see Choline#Transport, transport). Trimethylglycine is demethylated in the liver and kidneys to dimethylglycine (tetrahydrofolate receives one of the methyl groups). Methylglycine forms, is excreted into urine, or is demethylated to glycine.


Function

Choline and its derivatives have many functions in humans and in other organisms. The most notable function is that choline serves as a synthetic precursor for other essential cell components and signalling molecules, such as
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s that form cell membranes, the
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
acetylcholine, and the osmoregulator trimethylglycine (betaine). Trimethylglycine in turn serves as a source of methyl groups by participating in the biosynthesis of S-adenosylmethionine, ''S''-adenosylmethionine.


Phospholipid precursor

Choline is transformed to different
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, like
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
s and
sphingomyelin Sphingomyelin (SPH, ˌsfɪŋɡoˈmaɪəlɪn) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a ethano ...
s. These are found in all
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s and the membranes of most cell
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s. Phosphatidylcholines are structurally important part of the cell membranes. In humans 40–50% of their phospholipids are phosphatidylcholines. Choline phospholipids also form lipid rafts in the cell membranes along with cholesterol. The rafts are centers, for example for Receptor (biochemistry), receptors and receptor signal transduction enzymes. Phosphatidylcholines are needed for the synthesis of VLDLs: 70–95% of their phospholipids are phosphatidylcholines in humans. Choline is also needed for the synthesis of pulmonary surfactant, which is a mixture consisting mostly of phosphatidylcholines. The surfactant is responsible for lung elasticity, that is for lung tissue's ability to contract and expand. For example, deficiency of phosphatidylcholines in the lung tissues has been linked to acute respiratory distress syndrome. Phosphatidylcholines are excreted into bile and work together with bile acid salts as surfactants in it, thus helping with the intestinal absorption of lipids.


Acetylcholine synthesis

Choline is needed to produce
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
. This is a
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
which plays a necessary role in muscle contraction, memory and neural development, for example. Nonetheless, there is little acetylcholine in the human body relative to other forms of choline. Neurons also store choline in the form of phospholipids to their cell membranes for the production of acetylcholine.


Source of trimethylglycine

In humans, choline is oxidized irreversibly in liver mitochondria to glycine betaine aldehyde by choline oxidases. This is oxidized by mitochondrial or cytosolic betaine-aldehyde dehydrogenases to trimethylglycine. Trimethylglycine is a necessary osmoregulator. It also works as a substrate for the BHMT-enzyme, which methylates
homocysteine Homocysteine is a non-proteinogenic α-amino acid. It is a homologue of the amino acid cysteine, differing by an additional methylene bridge (-CH2-). It is biosynthesized from methionine by the removal of its terminal Cε methyl group. In the b ...
to methionine. This is a S-adenosylmethionine, ''S''-adenosylmethionine (SAM) precursor. SAM is a common reagent in biological methylation reactions. For example, it methylates guanidines of DNA and certain lysines of histones. Thus it is part of gene expression and epigenetic regulation. Choline deficiency thus leads to elevated homocysteine levels and decreased SAM levels in blood.


Content in foods

Choline occurs in foods as a free molecule and in the form of
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s, especially as
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
s. Choline is highest in
organ meats Offal (), also called variety meats, pluck or organ meats, is the organs of a butchered animal. The word does not refer to a particular list of edible organs, which varies by culture and region, but usually excludes muscle. Offal may also refer ...
and
egg yolks Among animals which produce eggs, the yolk (; also known as the vitellus) is the nutrient-bearing portion of the egg whose primary function is to supply food for the development of the embryo. Some types of egg contain no yolk, for example bec ...
though it is found to a lesser degree in non-organ meats, grains, vegetables, fruit and
dairy products Dairy products or milk products, also known as lacticinia, are Food product, food products made from (or containing) milk. The most common dairy animals are cow, water buffalo, dairy goat, nanny goat, and Sheep, ewe. Dairy products include commo ...
. Cooking oils and other food fats have about 5 mg/100 g of total choline. In the United States, Nutrition facts label, food labels express the amount of choline in a serving as a percentage of daily value (%DV) based on the adequate intake of 550 mg/day. 100% of the daily value means that a serving of food has 550 mg of choline. "Total choline" is defined as the sum of free choline and choline-containing phospholipids, without accounting for mass fraction. Human breast milk is rich in choline. Exclusive breastfeeding corresponds to about 120 mg of choline per day for the baby. Increase in a mother's choline intake raises the choline content of breast milk and low intake decreases it. Infant formulas may or may not contain enough choline. In the EU and the US, it is mandatory to add at least 7 mg of choline per 100 kilocalories (kcal) to every infant formula. In the EU, levels above 50 mg/100 kcal are not allowed. Trimethylglycine is a functional metabolite of choline. It substitutes for choline nutritionally, but only partially. High amounts of trimethylglycine occur in wheat bran (1,339 mg/100 g), toasted wheat germ (1,240 mg/100 g) and spinach (600–645 mg/100 g), for example.


Daily values

The following table contains updated sources of choline to reflect the new Daily Value and the new Nutrition Facts and Supplement Facts Labels. It reflects data from the U.S. Department of Agriculture, Agricultural Research Service. FoodData Central, 2019. DV = Daily Value. The U.S. Food and Drug Administration (FDA) developed DVs to help consumers compare the nutrient contents of foods and dietary supplements within the context of a total diet. The DV for choline is 550 mg for adults and children age 4 years and older. The FDA does not require food labels to list choline content unless choline has been added to the food. Foods providing 20% or more of the DV are considered to be high sources of a nutrient, but foods providing lower percentages of the DV also contribute to a healthful diet. The U.S. Department of Agriculture's (USDA's) FoodData Central lists the nutrient content of many foods and provides a comprehensive list of foods containing choline arranged by nutrient content.


Dietary recommendations

Recommendations are in milligrams per day (mg/day). The European Food Safety Authority (EFSA) recommendations are general recommendations for the EU countries. The EFSA has not set any upper limits for intake. Individual EU countries may have more specific recommendations. The National Academy of Medicine (NAM) recommendations apply in the United States, Australia and New Zealand.


Intake in populations

Twelve surveys undertaken in 9 EU countries between 2000 and 2011 estimated choline intake of adults in these countries to be 269–468 milligrams per day. Intake was 269–444 mg/day in adult women and 332–468 mg/day in adult men. Intake was 75–127 mg/day in infants, 151–210 mg/day in 1- to 3-year-olds, 177–304 mg/day in 3- to 10-year-olds and 244–373 mg/day in 10- to 18-year-olds. The total choline intake mean estimate was 336 mg/day in pregnant adolescents and 356 mg/day in pregnant women. A study based on the NHANES 2009–2012 survey estimated the choline intake to be too low in some US subpopulations. Intake was 315.2–318.8 mg/d in 2+ year olds between this time period. Out of 2+ year olds, only % of males and % of females exceeded the adequate intake (AI). AI was exceeded by % of 2- to 3-year-olds, % of 4- to 8-year-olds, % of 9- to 13-year-olds, % of 14–18 and % of 19+ year olds. Upper intake level was not exceeded in any subpopulations. A 2013–2014 NHANES study of the US population found the choline intake of 2- to 19-year-olds to be  mg/day and  mg/day in adults 20 and over. Intake was  mg/d in men 20 and over and 278 mg/d in women 20 and over.


Deficiency


Signs and symptoms

Symptomatic choline deficiency is rare in humans. Most obtain sufficient amounts of it from the diet and are able to biosynthesize limited amounts of it. Symptomatic deficiency is often caused by certain diseases or by other indirect causes. Severe deficiency causes muscle damage and
non-alcoholic fatty liver disease Non-alcoholic fatty liver disease (NAFLD), also known as metabolic (dysfunction) associated fatty liver disease (MAFLD), is excessive fat build-up in the liver without another clear cause such as alcohol use. There are two types; non-alcoholic ...
, which may develop into cirrhosis. Besides humans, fatty liver is also a typical sign of choline deficiency in other animals. Bleeding in the kidneys can also occur in some species. This is suspected to be due to deficiency of choline derived trimethylglycine, which functions as an osmoregulator.


Causes and mechanisms

Estrogen production is a relevant factor which predisposes individuals to deficiency along with low dietary choline intake. Estrogens activate
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
producing PEMT enzymes. Women before
menopause Menopause, also known as the climacteric, is the time in women's lives when menstrual periods stop permanently, and they are no longer able to bear children. Menopause usually occurs between the age of 47 and 54. Medical professionals often d ...
have lower dietary need for choline than men due to women's higher estrogen production. Without estrogen therapy, the choline needs of post-menopausal women are similar to men's. Some single-nucleotide polymorphisms (genetic factors) affecting choline and folate metabolism are also relevant. Certain gut microbes also degrade choline more efficiently than others, so they are also relevant. In deficiency, availability of phosphatidylcholines in the liver are decreased – these are needed for formation of VLDLs. Thus VLDL-mediated fatty acid transport out of the liver decreases leading to fat accumulation in the liver. Other simultaneously occurring mechanisms explaining the observed liver damage have also been suggested. For example, choline phospholipids are also needed in mitochondrial membranes. Their inavailability leads to the inability of mitochondrial membranes to maintain proper electrochemical gradient, which, among other things, is needed for degrading fatty acids via β-oxidation. Fat metabolism within liver therefore decreases.


Excess intake

Excessive doses of choline can have adverse effects. Daily 8–20 g doses of choline, for example, have been found to cause
low blood pressure Hypotension is low blood pressure. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. Blood pressure is indicated by two numbers, the systolic blood pressure (the top number) and the dia ...
, nausea,
diarrhea Diarrhea, also spelled diarrhoea, is the condition of having at least three loose, liquid, or watery bowel movements each day. It often lasts for a few days and can result in dehydration due to fluid loss. Signs of dehydration often begin wi ...
and fish-like body odor. The odor is due to
trimethylamine Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. It is a colorless, hygroscopic, and flammable tertiary amine. It is a gas at room temperature but is usually sold as a 40% solution in water. (It is also sold in pressurized ...
(TMA) formed by the gut microbes from the unabsorbed choline (see trimethylaminuria). The liver oxidizes TMA to trimethylamine ''N''-oxide (TMAO). Elevated levels of TMA and TMAO in the body have been linked to increased risk of atherosclerosis and mortality. Thus, excessive choline intake has been hypothetized to increase these risks in addition to carnitine, which also is formed into TMA and TMAO by gut bacteria. However, choline intake has not been shown to increase the risk of dying from cardiovascular diseases. It is plausible that elevated TMA and TMAO levels are just a symptom of other underlying illnesses or genetic factors that predispose individuals for increased mortality. Such factors may have not been properly accounted for in certain studies observing TMA and TMAO level related mortality. Causality may be reverse or confounding and large choline intake might not increase mortality in humans. For example, kidney dysfunction predisposes for cardiovascular diseases, but can also decrease TMA and TMAO excretion.


Health effects


Neural tube closure

Low maternal intake of choline is associated with an increased risk of neural tube defects. Higher maternal intake of choline is likely associated with better neurocognition/neurodevelopment in children. Folate deficiency also causes NTDs. Choline and folate, interacting with Vitamin B12, vitamin B12, act as methyl donors to
homocysteine Homocysteine is a non-proteinogenic α-amino acid. It is a homologue of the amino acid cysteine, differing by an additional methylene bridge (-CH2-). It is biosynthesized from methionine by the removal of its terminal Cε methyl group. In the b ...
to form methionine, which can then go on to form SAM ( ''S''-adenosylmethionine). SAM is the substrate for almost all methylation reactions in mammals. It has been suggested that disturbed methylation via SAM could be responsible for the relation between folate and NTDs. This may also apply to choline. Certain
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mi ...
s that disturb choline metabolism increase the prevalence of NTDs in newborns, but the role of dietary choline deficiency remains unclear,


Cardiovascular diseases and cancer

Choline deficiency can cause fatty liver, which increases cancer and cardiovascular disease risk. Choline deficiency also decreases SAM production, which partakes in DNA methylation – this decrease may also contribute to carcinogenesis. Thus, deficiency and its association with such diseases has been studied. However, observational studies of free populations have not convincingly shown an association between low choline intake and cardiovascular diseases or most cancers. Studies on prostate cancer have been contradictory.


Cognition

Studies observing the effect between higher choline intake and cognition have been conducted in human adults, with contradictory results. Similar studies on human infants and children have been contradictory and also limited.


Perinatal development

Both pregnancy and lactation increase demand for choline dramatically. This demand may be met by upregulation of Phosphatidyl ethanolamine methyltransferase, PEMT via increasing estrogen levels to produce more choline ''de novo'', but even with increased PEMT activity, the demand for choline is still so high that bodily stores are generally depleted. This is exemplified by the observation that ''Pemt −/−'' mice (mice lacking functional PEMT) will abort at 9–10 days unless fed supplemental choline. While maternal stores of choline are depleted during pregnancy and lactation, the
placenta The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate mater ...
accumulates choline by pumping choline against the concentration gradient into the tissue, where it is then stored in various forms, mostly as
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
. Choline concentrations in amniotic fluid can be ten times higher than in maternal blood.


Functions in the fetus

Choline is in high demand during pregnancy as a substrate for building cellular membranes (rapid fetal and mother tissue expansion), increased need for one-carbon Moiety (chemistry), moieties (a substrate for methylation of DNA and other functions), raising choline stores in fetal and placental tissues, and for increased production of lipoproteins (proteins containing "fat" portions). In particular, there is interest in the impact of choline consumption on the brain. This stems from choline's use as a material for making cellular membranes (particularly in making
phosphatidylcholine Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soyb ...
). Human brain growth is most rapid during the third trimester of pregnancy and continues to be rapid to approximately five years of age. During this time, the demand is high for
sphingomyelin Sphingomyelin (SPH, ˌsfɪŋɡoˈmaɪəlɪn) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a ethano ...
, which is made from phosphatidylcholine (and thus from choline), because this material is used to Myelinated nerve fibers, myelinate (insulate) nerve fibers. Choline is also in demand for the production of the
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
, which can influence the structure and organization of brain regions, neurogenesis, myelination, and synapse formation. Acetylcholine is even present in the placenta and may help control cell proliferation and Cell differentiation, differentiation (increases in cell number and changes of multiuse cells into dedicated cellular functions) and parturition. Choline uptake into the brain is controlled by a low-affinity transporter located at the blood–brain barrier. Transport occurs when arterial Blood plasma, plasma choline concentrations increase above 14 μmol/L, which can occur during a spike in choline concentration after consuming choline-rich foods. Neurons, conversely, acquire choline by both high- and low-affinity transporters. Choline is stored as membrane-bound phosphatidylcholine, which can then be used for acetylcholine neurotransmitter synthesis later. Acetylcholine is formed as needed, travels across the synapse, and transmits the signal to the following neuron. Afterwards, acetylcholinesterase degrades it, and the free choline is taken up by a high-affinity transporter into the neuron again.


Uses

Choline chloride and choline bitartrate are used in dietary supplements. Bitartrate is used more often due to its lower
hygroscopic Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance ...
ity. Certain choline salts are used to supplement chicken, Turkey (bird), turkey and some other animal feeds. Some salts are also used as industrial chemicals: for example, in photolithography to remove photoresist. Choline theophyllinate and choline salicylate are used as medicines, as well as structural analogs, like methacholine and carbachol. Radiolabeled cholines, like carbon-11-choline, 11C-choline, are used in medical imaging. Other commercially used salts include tricholine citrate and choline bicarbonate.


Antagonists and inhibitors

Hundreds of choline Receptor antagonist, antagonists and enzyme inhibitors have been developed for research purposes. Aminomethyl propanol, Aminomethylpropanol is among the first ones used as a research tool. It inhibits choline and trimethylglycine synthesis. It is able to induce choline deficiency that in turn results in fatty liver in rodents. Diethanolamine is another such compound, but also an environmental pollutant. N-cyclohexylcholine, ''N''-cyclohexylcholine inhibits choline uptake primarily in brains. Hemicholinium-3 is a more general inhibitor, but also moderately inhibits
choline kinase Choline kinase (also known as CK, ChoK and choline phosphokinase) is an enzyme which catalyzes the first reaction in the choline pathway for phosphatidylcholine (PC) biosynthesis. This reaction involves the transfer of a phosphate group from adenos ...
s. More specific choline kinase inhibitors have also been developed. Trimethylglycine synthesis inhibitors also exist: carboxybutylhomocysteine is an example of a specific BHMT inhibitor. The cholinergic hypothesis of dementia has not only lead to medicinal acetylcholinesterase inhibitors, but also to a variety of acetylcholine inhibitors. Examples of such inhibiting research chemicals include triethylcholine, homocholine and many other ''N''-ethyl derivates of choline, which are false neurotransmitter analogs of acetylcholine. Choline acetyltransferase inhibitors have also been developed.


History


Discovery

In 1849, Adolph Strecker was the first to isolate choline from pig bile. In 1852, L. Babo and M. Hirschbrunn extracted choline from white mustard seeds and named it ''sinkaline''. In 1862, Strecker repeated his experiment with pig and ox bile, calling the substance ''choline'' for the first time after the Greek word for bile, ''chole'', and identifying it with the chemical formula C5H13NO. In 1850, Theodore Nicolas Gobley extracted from the brains and roe of carps a substance he named ''
lecithin Lecithin (, from the Greek ''lekithos'' "yolk") is a generic term to designate any group of yellow-brownish fatty substances occurring in animal and plant tissues which are amphiphilic – they attract both water and fatty substances (and so ar ...
'' after the Greek word for egg yolk, ''lekithos'', showing in 1874 that it was a mixture of phosphatidylcholines. In 1865, Oscar Liebreich isolated "''neurine''" from animal brains. The structural formulas of
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
and Liebreich's "neurine" were resolved by Adolf von Baeyer in 1867. Later that year "neurine" and sinkaline were shown to be the same substances as Strecker's choline. Thus, Bayer was the first to resolve the structure of choline. The compound now known as neurine is unrelated to choline.


Discovery as a nutrient

In the early 1930s, Charles Best (medical scientist), Charles Best and colleagues noted that fatty liver in rats on a special diet and diabetic dogs could be prevented by feeding them
lecithin Lecithin (, from the Greek ''lekithos'' "yolk") is a generic term to designate any group of yellow-brownish fatty substances occurring in animal and plant tissues which are amphiphilic – they attract both water and fatty substances (and so ar ...
, proving in 1932 that choline in lecithin was solely responsible for this preventive effect. In 1998, the US National Academy of Medicine reported their first recommendations for choline in the human diet.


References

{{Authority control Essential nutrients Primary alcohols Cholinergics Quaternary ammonium compounds Dietary supplements