HOME

TheInfoList



OR:

The term chemoton (short for 'chemical
automaton An automaton (; plural: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.Automaton – Definition and More ...
') refers to an abstract model for the fundamental unit of life introduced by Hungarian
theoretical biologist Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development a ...
Tibor Gánti Tibor Gánti (10 September 1933 – 15 April 2009) was a Hungarian theoretical biologist and biochemist, who is best known for his theory of the chemoton, a model for defining the minimal nature of life. He taught industrial biochemistry at F ...
. Popular articles express surprise that Gánti's work is so little known. Gánti conceived the basic idea in 1952 and formulated the concept in 1971 in his book ''The Principles of Life'' (originally written in Hungarian, and translated to English only in 2003). He suggested that the chemoton was the original ancestor of all organisms. The basic assumption of the model is that life should fundamentally and essentially have three properties:
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
,
self-replication Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and ca ...
, and a bilipid membrane. The metabolic and replication functions together form an
autocatalytic A single chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same or a coupled reaction.Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 199 ...
subsystem necessary for the basic functions of life, and a membrane encloses this subsystem to separate it from the surrounding environment. Therefore, any system having such properties may be regarded as alive, and it will be subjected to
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charle ...
and contain a self-sustaining cellular information. Some consider this model a significant contribution to
origin of life In biology, abiogenesis (from a- 'not' + Greek bios 'life' + genesis 'origin') or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothes ...
as it provides a philosophy of evolutionary units.


Property

The chemoton is a protocell that grows by metabolism, reproduces by biological fission, and has at least rudimentary genetic variation. Thus, it contains three subsystems, namely an autocatalytic network for metabolism, a lipid bilayer for structural organisation, and a replicating machinery for information. Unlike cellular metabolic reactions, the metabolism of the chemoton is in an autonomous chemical cycle and is not dependent on enzymes. Autocatalysis produces its own structures and functions. Hence, the process itself has no hereditary variation. However, the model includes another molecule (''T'' in the diagram) that is spontaneously produced and is incorporated into the structure. This molecule is
amphipathic An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a compoun ...
like
membrane lipids Membrane lipids are a group of compounds (structurally similar to fats and oils) which form the double-layered surface of all cells (lipid bilayer). The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipid ...
, but it is highly dynamic, leaving small gaps that close and open frequently. This unstable structure is important for new amphipathic molecules to be added, so that a membrane is subsequently formed. This will become a microsphere. Due to metabolic reaction,
osmotic pressure Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure ...
will build up inside the microsphere, and this will generate a force for invaginating the membrane, and ultimately division. In fact, this is close to the cell division of cell wall-less bacteria, such as ''
Mycoplasma ''Mycoplasma'' is a genus of bacteria that, like the other members of the class ''Mollicutes'', lack a cell wall around their cell membranes. Peptidoglycan (murein) is absent. This characteristic makes them naturally resistant to antibiotics ...
''. Continuous reactions will also invariably produce variable polymers that can be inherited by daughter cells. In the advanced version of the chemoton, the hereditary information will act as a genetic material, something like a
ribozyme Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonst ...
of the
RNA world The RNA world is a hypothetical stage in the evolutionary history of life on Earth, in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence ...
.


Significance


Origin of life

The primary use of the chemoton model is in the study of the chemical origin of life. Because the chemoton itself can be thought of as a primitive or minimal cellular life as it satisfies the definition of what a cell is (that it is a unit of biological activity enclosed by a membrane and capable of self-reproduction). Experimental demonstration showed that a synthesised chemoton can survive in a wide range of chemical solutions, it formed materials for its internal components, it metabolised its chemicals, and it grew in size and multiplied itself.


Unit of selection

As it is scientifically hypothesised that the first replicating systems must be simple structure, most likely before any enzymes or templates existed, chemoton provides a plausible scenario. As an autocatalytic but non-genetic entity, it predates the enzyme-dependent precursors of life, such as RNA World. But being capable of self-replication and producing variant metabolites, it possibly could be an entity with the first biological evolution, therefore, the origin of the unit of Darwinian selection.


Artificial life

The chemoton has laid the foundation of some aspects of
artificial life Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry ...
. The computational basis has become a topic of software development and experimentation in the investigation of artificial life. The main reason is that the chemoton simplifies the otherwise complex biochemical and molecular functions of living cells. Since the chemoton is a system consisting of a large but fixed number of interacting molecular species, it can effectively be implemented in a process algebra-based computer language.


Comparison with other theories of life

The chemoton is just one of several theories of life, including the hypercycle of
Manfred Eigen Manfred Eigen (; 9 May 1927 – 6 February 2019) was a German Biophysical chemistry, biophysical chemist who won the 1967 Nobel Prize in Chemistry for work on measuring fast chemical reactions. Eigen's research helped solve major problems in ...
and
Peter Schuster Peter K. Schuster (born 7 March 1941) is a theoretical chemist known for his work with the German Nobel Laureate Manfred Eigen in developing the quasispecies model. His work has made great strides in the understanding of viruses and their replica ...
, which includes the concept of
quasispecies The quasispecies model is a description of the process of the Darwinian evolution of certain self-replicating entities within the framework of physical chemistry. A quasispecies is a large group or "cloud" of related genotypes that exist in an en ...
, the (''M,R'') systems of Robert Rosen,
autopoiesis The term autopoiesis () refers to a system capable of producing and maintaining itself by creating its own parts. The term was introduced in the 1972 publication '' Autopoiesis and Cognition: The Realization of the Living'' by Chilean biologist ...
(or ''self-building'') of
Humberto Maturana Humberto Maturana Romesín (September 14, 1928 – May 6, 2021) was a Chilean biologist and philosopher. Many consider him a member of a group of second-order cybernetics theoreticians such as Heinz von Foerster, Gordon Pask, Herbert Brün a ...
and
Francisco Varela Francisco Javier Varela García (September 7, 1946 – May 28, 2001) was a Chilean biologist, philosopher, cybernetician, and neuroscientist who, together with his mentor Humberto Maturana, is best known for introducing the concept of autopoiesi ...
, and the
autocatalytic sets An autocatalytic set is a collection of entities, each of which can be created catalytically by other entities within the set, such that as a whole, the set is able to catalyze its own production. In this way the set ''as a whole'' is said to be ...
of
Stuart Kauffman Stuart Alan Kauffman (born September 28, 1939) is an American medical doctor, theoretical biologist, and complex systems researcher who studies the origin of life on Earth. He was a professor at the University of Chicago, University of Pennsylv ...
, similar to an earlier proposal by
Freeman Dyson Freeman John Dyson (15 December 1923 – 28 February 2020) was an English-American theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrices, mathematical formulation of quantum m ...
. All of these (including the chemoton) found their original inspiration in Erwin Schrödinger's book ''What is Life?'' but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories. (Gánti's book does include a mention of Rosen, but this was added as an editorial comment, and was not written by Gánti.) Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen. Until recently there have been almost no attempts to compare the different theories and discuss them together.


Last Universal Common Ancestor (LUCA)

Some authors equate models of the origin of life with LUCA, the Last Universal Common Ancestor of all extant life. This is a serious error resulting from failure to recognize that L refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA. Gill and Forterre expressed the essential point as follows:
LUCA should not be confused with the first cell, but was the product of a long period of evolution. Being the "last" means that LUCA was preceded by a long succession of older "ancestors."


References

{{Reflist


External links


Chemoton homepage
Philosophy of biology Origin of life Self-organization Hungarian inventions