Centrifugal Force
   HOME

TheInfoList



OR:

In
Newtonian mechanics Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
, the centrifugal force is an
inertial force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial reference frame, non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's la ...
(also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a
rotating frame of reference A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only ...
. It is directed away from an axis which is parallel to the
axis of rotation Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rota ...
and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis. The magnitude of centrifugal force ''F'' on an object of
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
''m'' at the distance ''r'' from the origin of a frame of reference rotating with
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
is: F = m\omega^2 r The concept of centrifugal force can be applied in rotating devices, such as
centrifuge A centrifuge is a device that uses centrifugal force to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or ...
s, centrifugal pumps, centrifugal governors, and
centrifugal clutch A centrifugal clutch is an automatic clutch that uses centrifugal force to operate. The output shaft is disengaged at low rotational speed and engages more as speed increases. It is often used in mopeds, underbones, lawn mowers, go-karts, chainsaws ...
es, and in centrifugal railways, planetary orbits and
banked curve A banked turn (or banking turn) is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the ...
s, when they are analyzed in a
rotating coordinate system A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers onl ...
. Confusingly, the term has sometimes also been used for the
reactive centrifugal force In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force. In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on th ...
, a real inertial-frame-independent Newtonian force that exists as a reaction to a
centripetal force A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous c ...
.


History

From 1659, the New Latin term ''vi centrifuga'' ("centrifugal force") is attested in
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
' notes and letters. Note, that in Latin means "center" and (from ) means "fleeing, avoiding". Thus, ''centrifugus'' means "fleeing from the center" in a
literal translation Literal translation, direct translation or word-for-word translation, is a translation of a text done by translating each word separately, without looking at how the words are used together in a phrase or sentence. In Translation studies, trans ...
. In 1673, in '' Horologium Oscillatorium'', Huygens writes (as translated by Richard J. Blackwell):
There is another kind of oscillation in addition to the one we have examined up to this point; namely, a motion in which a suspended weight is moved around through the circumference of a circle. From this we were led to the construction of another clock at about the same time we invented the first one. ..I originally intended to publish here a lengthy description of these clocks, along with matters pertaining to circular motion and centrifugal force, as it might be called, a subject about which I have more to say than I am able to do at present. But, in order that those interested in these things can sooner enjoy these new and not useless speculations, and in order that their publication not be prevented by some accident, I have decided, contrary to my plan, to add this fifth part ..
The same year,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
received Huygens work via Henry Oldenburg and replied "I pray you return r. Huygensmy humble thanks ..I am glad we can expect another discourse of the ''vis centrifuga'', which speculation may prove of good use in
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
and
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
, as well as
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects r ...
". In 1687, in '' Principia'', Newton further develops ''vis centrifuga'' ("centrifugal force"). Around this time, the concept is also further evolved by Newton,
Gottfried Wilhelm Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathema ...
, and
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
. In the late 18th century, the modern conception of the centrifugal force evolved as a "
fictitious force A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. It is related to Newton's second law of motion, which trea ...
" arising in a rotating reference. Centrifugal force has also played a role in debates in
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
about detection of absolute motion. Newton suggested two arguments to answer the question of whether
absolute rotation In physics, the concept of absolute rotation— rotation independent of any external reference—is a topic of debate about relativity, cosmology, and the nature of physical laws. For the concept of absolute rotation to be scientifically meaning ...
can be detected: the rotating bucket argument, and the rotating spheres argument.An English translation is found at According to Newton, in each scenario the centrifugal force would be observed in the object's local frame (the frame where the object is stationary) only if the frame were rotating with respect to absolute space. Around 1883, Mach's principle was proposed where, instead of absolute rotation, the motion of the distant stars relative to the local inertial frame gives rise through some (hypothetical) physical law to the centrifugal force and other inertia effects. Today's view is based upon the idea of an inertial frame of reference, which privileges observers for which the laws of physics take on their simplest form, and in particular, frames that do not use centrifugal forces in their equations of motion in order to describe motions correctly. Around 1914, the analogy between centrifugal force (sometimes used to create artificial gravity) and gravitational forces led to the
equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (suc ...
of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
.


Introduction

Centrifugal force is an outward force apparent in a
rotating reference frame A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers onl ...
. It does not exist when a system is described relative to an inertial frame of reference. All measurements of position and velocity must be made relative to some frame of reference. For example, an analysis of the motion of an object in an airliner in flight could be made relative to the airliner, to the surface of the Earth, or even to the Sun. A reference frame that is at rest (or one that moves with no rotation and at constant velocity) relative to the "
fixed stars In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
" is generally taken to be an inertial frame. Any system can be analyzed in an inertial frame (and so with no centrifugal force). However, it is often more convenient to describe a rotating system by using a rotating frame—the calculations are simpler, and descriptions more intuitive. When this choice is made, fictitious forces, including the centrifugal force, arise. In a reference frame rotating about an axis through its origin, all objects, regardless of their state of motion, appear to be under the influence of a radially (from the axis of rotation) outward force that is proportional to their mass, to the distance from the axis of rotation of the frame, and to the square of the
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
of the frame. This is the centrifugal force. As humans usually experience centrifugal force from within the rotating reference frame, e.g. on a merry-go-round or vehicle, this is much more well-known than centripetal force. Motion relative to a rotating frame results in another fictitious force: the
Coriolis force In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
. If the rate of rotation of the frame changes, a third fictitious force (the
Euler force In classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The E ...
) is required. These fictitious forces are necessary for the formulation of correct equations of motion in a rotating reference frame and allow Newton's laws to be used in their normal form in such a frame (with one exception: the fictitious forces do not obey Newton's third law: they have no equal and opposite counterparts). Newton's third law requires the counterparts to exist within the same frame of reference, hence centrifugal and centripetal force, which do not, are not action and reaction (as is sometimes erroneously contended).


Examples


Vehicle driving round a curve

A common experience that gives rise to the idea of a centrifugal force is encountered by passengers riding in a vehicle, such as a car, that is changing direction. If a car is traveling at a constant speed along a straight road, then a passenger inside is not accelerating and, according to
Newton's second law of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
, the net force acting on them is therefore zero (all forces acting on them cancel each other out). If the car enters a curve that bends to the left, the passenger experiences an apparent force that seems to be pulling them towards the right. This is the fictitious centrifugal force. It is needed within the passengers' local frame of reference to explain their sudden tendency to start accelerating to the right relative to the car—a tendency which they must resist by applying a rightward force to the car (for instance, a frictional force against the seat) in order to remain in a fixed position inside. Since they push the seat toward the right, Newton's third law says that the seat pushes them towards the left. The centrifugal force must be included in the passenger's reference frame (in which the passenger remains at rest): it counteracts the leftward force applied to the passenger by the seat, and explains why this otherwise unbalanced force does not cause them to accelerate. However, it would be apparent to a stationary observer watching from an overpass above that the frictional force exerted on the passenger by the seat is not being balanced; it constitutes a net force to the left, causing the passenger to accelerate toward the inside of the curve, as they must in order to keep moving with the car rather than proceeding in a straight line as they otherwise would. Thus the "centrifugal force" they feel is the result of a "centrifugal tendency" caused by inertia. Similar effects are encountered in aeroplanes and
roller coaster A roller coaster, or rollercoaster, is a type of amusement ride that employs a form of elevated railroad track designed with tight turns, steep slopes, and sometimes inversions. Passengers ride along the track in open cars, and the rides are o ...
s where the magnitude of the apparent force is often reported in "
G's The gravitational force equivalent, or, more commonly, g-force, is a measurement of the type of force per unit mass – typically acceleration – that causes a perception of weight, with a g-force of 1 g (not gram in mass measure ...
".


Stone on a string

If a stone is whirled round on a string, in a horizontal plane, the only real force acting on the stone in the horizontal plane is applied by the string (gravity acts vertically). There is a net force on the stone in the horizontal plane which acts toward the center. In an inertial frame of reference, were it not for this net force acting on the stone, the stone would travel in a straight line, according to Newton's first law of motion. In order to keep the stone moving in a circular path, a
centripetal force A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous c ...
, in this case provided by the string, must be continuously applied to the stone. As soon as it is removed (for example if the string breaks) the stone moves in a straight line, as viewed from above. In this inertial frame, the concept of centrifugal force is not required as all motion can be properly described using only real forces and Newton's laws of motion. In a frame of reference rotating with the stone around the same axis as the stone, the stone is stationary. However, the force applied by the string is still acting on the stone. If one were to apply Newton's laws in their usual (inertial frame) form, one would conclude that the stone should accelerate in the direction of the net applied force—towards the axis of rotation—which it does not do. The centrifugal force and other fictitious forces must be included along with the real forces in order to apply Newton's laws of motion in the rotating frame.


Earth

The
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
constitutes a rotating reference frame because it rotates once every 23 hours and 56 minutes around its axis. Because the rotation is slow, the fictitious forces it produces are often small, and in everyday situations can generally be neglected. Even in calculations requiring high precision, the centrifugal force is generally not explicitly included, but rather lumped in with the gravitational force: the strength and direction of the local "
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
" at any point on the Earth's surface is actually a combination of gravitational and centrifugal forces. However, the fictitious forces can be of arbitrary size. For example, in an Earth-bound reference system, the fictitious force (the net of Coriolis and centrifugal forces) is enormous and is responsible for the Sun orbiting around the Earth (in the Earth-bound reference system). This is due to the large mass and velocity of the Sun (relative to the Earth).


Weight of an object at the poles and on the equator

If an object is weighed with a simple
spring balance A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. It works in accordance with Hooke's Law, which states th ...
at one of the Earth's poles, there are two forces acting on the object: the Earth's gravity, which acts in a downward direction, and the equal and opposite
restoring force In physics, the restoring force is a force that acts to bring a body to its equilibrium position. The restoring force is a function only of position of the mass or particle, and it is always directed back toward the equilibrium position of the s ...
in the spring, acting upward. Since the object is stationary and not accelerating, there is no net force acting on the object and the force from the spring is equal in magnitude to the force of gravity on the object. In this case, the balance shows the value of the force of gravity on the object. When the same object is weighed on the
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
, the same two real forces act upon the object. However, the object is moving in a circular path as the Earth rotates and therefore experiencing a centripetal acceleration. When considered in an inertial frame (that is to say, one that is not rotating with the Earth), the non-zero acceleration means that force of gravity will not balance with the force from the spring. In order to have a net centripetal force, the magnitude of the restoring force of the spring must be less than the magnitude of force of gravity. Less restoring force in the spring is reflected on the scale as less weight — about 0.3% less at the equator than at the poles. In the Earth reference frame (in which the object being weighed is at rest), the object does not appear to be accelerating, however the two real forces, gravity and the force from the spring, are the same magnitude and do not balance. The centrifugal force must be included to make the sum of the forces be zero to match the apparent lack of acceleration. Note: ''In fact, the observed weight difference is more — about 0.53%. Earth's gravity is a bit stronger at the poles than at the equator, because the Earth is not a perfect sphere, so an object at the poles is slightly closer to the center of the Earth than one at the equator; this effect combines with the centrifugal force to produce the observed weight difference.''


Derivation

For the following formalism, the
rotating frame of reference A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only ...
is regarded as a special case of a
non-inertial reference frame A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are ...
that is rotating relative to an inertial reference frame denoted the stationary frame.


Time derivatives in a rotating frame

In a rotating frame of reference, the time derivatives of any vector function of time—such as the velocity and acceleration vectors of an object—will differ from its time derivatives in the stationary frame. If are the components of with respect to unit vectors directed along the axes of the rotating frame (i.e. ), then the first time derivative of with respect to the rotating frame is, by definition, . If the absolute
angular velocity In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
of the rotating frame is then the derivative of with respect to the stationary frame is related to by the equation: \frac = \left frac\right+ \boldsymbol \times \boldsymbol\ , where \times denotes the vector cross product. In other words, the rate of change of in the stationary frame is the sum of its apparent rate of change in the rotating frame and a rate of rotation \boldsymbol \times \boldsymbol attributable to the motion of the rotating frame. The vector has magnitude equal to the rate of rotation and is directed along the axis of rotation according to the
right-hand rule In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of a cross-product of 2 vectors. Most of th ...
.


Acceleration

Newton's law of motion for a particle of mass written in vector form is: \boldsymbol = m\boldsymbol\ , where is the vector sum of the physical forces applied to the particle and is the absolute
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
(that is, acceleration in an inertial frame) of the particle, given by: \boldsymbol=\frac \ , where is the position vector of the particle. By applying the transformation above from the stationary to the rotating frame three times (twice to \frac and once to \frac\left frac\right/math>), the absolute acceleration of the particle can be written as: \begin \boldsymbol &=\frac = \frac\frac = \frac \left( \left frac\right+ \boldsymbol \times \boldsymbol\ \right) \\ &= \left \frac \right+ \boldsymbol\times \left \frac \right+ \frac\times\boldsymbol + \boldsymbol \times \frac \\ &= \left \frac \right+ \boldsymbol\times \left \frac \right+ \frac\times\boldsymbol + \boldsymbol \times \left( \left frac\right+ \boldsymbol \times \boldsymbol\ \right) \\ &= \left \frac \right+ \frac\times\boldsymbol + 2 \boldsymbol\times \left \frac \right+ \boldsymbol\times ( \boldsymbol \times \boldsymbol) \ . \end


Force

The apparent acceleration in the rotating frame is \left frac\right. An observer unaware of the rotation would expect this to be zero in the absence of outside forces. However, Newton's laws of motion apply only in the inertial frame and describe dynamics in terms of the absolute acceleration \frac . Therefore, the observer perceives the extra terms as contributions due to fictitious forces. These terms in the apparent acceleration are independent of mass; so it appears that each of these fictitious forces, like gravity, pulls on an object in proportion to its mass. When these forces are added, the equation of motion has the form: \boldsymbol - m\frac\times\boldsymbol - 2m \boldsymbol\times \left \frac \right- m\boldsymbol\times (\boldsymbol\times \boldsymbol) = m\left \frac \right\ . From the perspective of the rotating frame, the additional force terms are experienced just like the real external forces and contribute to the apparent acceleration. The additional terms on the force side of the equation can be recognized as, reading from left to right, the
Euler force In classical mechanics, the Euler force is the fictitious tangential force that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axes. The E ...
-m \mathrm\boldsymbol/\mathrmt \times\boldsymbol, the
Coriolis force In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
-2m \boldsymbol\times \left \mathrm \boldsymbol/\mathrmt \right/math>, and the centrifugal force -m\boldsymbol\times (\boldsymbol\times \boldsymbol), respectively. Unlike the other two fictitious forces, the centrifugal force always points radially outward from the axis of rotation of the rotating frame, with magnitude , and unlike the Coriolis force in particular, it is independent of the motion of the particle in the rotating frame. As expected, for a non-rotating inertial frame of reference (\boldsymbol\omega=0) the centrifugal force and all other fictitious forces disappear. Similarly, as the centrifugal force is proportional to the distance from object to the axis of rotation of the frame, the centrifugal force vanishes for objects that lie upon the axis.


Absolute rotation

Three scenarios were suggested by Newton to answer the question of whether the absolute rotation of a local frame can be detected; that is, if an observer can decide whether an observed object is rotating or if the observer is rotating. * The shape of the surface of water rotating in a bucket. The shape of the surface becomes concave to balance the centrifugal force against the other forces upon the liquid. * The tension in a string joining two spheres rotating about their center of mass. The tension in the string will be proportional to the centrifugal force on each sphere as it rotates around the common center of mass. In these scenarios, the effects attributed to centrifugal force are only observed in the local frame (the frame in which the object is stationary) if the object is undergoing absolute rotation relative to an inertial frame. By contrast, in an inertial frame, the observed effects arise as a consequence of the inertia and the known forces without the need to introduce a centrifugal force. Based on this argument, the privileged frame, wherein the laws of physics take on the simplest form, is a stationary frame in which no fictitious forces need to be invoked. Within this view of physics, any other phenomenon that is usually attributed to centrifugal force can be used to identify absolute rotation. For example, the oblateness of a sphere of freely flowing material is often explained in terms of centrifugal force. The
oblate spheroid A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circ ...
shape reflects, following
Clairaut's theorem Clairaut's theorem characterizes the surface gravity on a viscous rotating ellipsoid in hydrostatic equilibrium under the action of its gravitational field and centrifugal force. It was published in 1743 by Alexis Claude Clairaut in a treatis ...
, the balance between containment by gravitational attraction and dispersal by centrifugal force. That the Earth is itself an oblate spheroid, bulging at the equator where the radial distance and hence the centrifugal force is larger, is taken as one of the evidences for its absolute rotation.


Applications

The operations of numerous common rotating mechanical systems are most easily conceptualized in terms of centrifugal force. For example: * A centrifugal governor regulates the speed of an engine by using spinning masses that move radially, adjusting the
throttle A throttle is the mechanism by which fluid flow is managed by constriction or obstruction. An engine's power can be increased or decreased by the restriction of inlet gases (by the use of a throttle), but usually decreased. The term ''throttle'' ...
, as the engine changes speed. In the reference frame of the spinning masses, centrifugal force causes the radial movement. * A
centrifugal clutch A centrifugal clutch is an automatic clutch that uses centrifugal force to operate. The output shaft is disengaged at low rotational speed and engages more as speed increases. It is often used in mopeds, underbones, lawn mowers, go-karts, chainsaws ...
is used in small engine-powered devices such as chain saws, go-karts and model helicopters. It allows the engine to start and idle without driving the device but automatically and smoothly engages the drive as the engine speed rises. Inertial drum brake ascenders used in
rock climbing Rock climbing is a sport in which participants climb up, across, or down natural rock formations. The goal is to reach the summit of a formation or the endpoint of a usually pre-defined route without falling. Rock climbing is a physically and ...
and the inertia reels used in many automobile seat belts operate on the same principle. * Centrifugal forces can be used to generate artificial gravity, as in proposed designs for rotating space stations. The
Mars Gravity Biosatellite The Mars Gravity Biosatellite was a project initiated as a competition between universities in 2001 by the Mars Society. The aim was to build a spacecraft concept to study the effects of Mars-level gravity (~0.38g) on mammals. Presentations were ...
would have studied the effects of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
-level gravity on mice with gravity simulated in this way. * Spin casting and
centrifugal casting Centrifugal casting is a metallurgical manufacturing process by casting that may refer to either: * Centrifugal casting (industrial), on an industrial scale * Centrifugal casting (silversmithing), for a smaller scale See also: Spin casting Sp ...
are production methods that use centrifugal force to disperse liquid metal or plastic throughout the negative space of a mold. *
Centrifuge A centrifuge is a device that uses centrifugal force to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or ...
s are used in science and industry to separate substances. In the reference frame spinning with the centrifuge, the centrifugal force induces a hydrostatic pressure gradient in fluid-filled tubes oriented perpendicular to the axis of rotation, giving rise to large
buoyant force Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pr ...
s which push low-density particles inward. Elements or particles denser than the fluid move outward under the influence of the centrifugal force. This is effectively Archimedes' principle as generated by centrifugal force as opposed to being generated by gravity. * Some amusement rides make use of centrifugal forces. For instance, a
Gravitron The Gravitron is an amusement ride, most commonly found as a portable ride at fairs and carnivals. The Gravitron first appeared at Morey's Piers in 1983 and quickly became a fixture at amusement parks in many countries. It is a modification of ...
's spin forces riders against a wall and allows riders to be elevated above the machine's floor in defiance of Earth's gravity. Nevertheless, all of these systems can also be described without requiring the concept of centrifugal force, in terms of motions and forces in a stationary frame, at the cost of taking somewhat more care in the consideration of forces and motions within the system.


Other uses of the term

While the majority of the scientific literature uses the term ''centrifugal force'' to refer to the particular fictitious force that arises in rotating frames, there are a few limited instances in the literature of the term applied to other distinct physical concepts. One of these instances occurs in Lagrangian mechanics. Lagrangian mechanics formulates mechanics in terms of generalized coordinates , which can be as simple as the usual polar coordinates (r,\ \theta) or a much more extensive list of variables.For an introduction, see for example For a description of generalized coordinates, see Within this formulation the motion is described in terms of '' generalized forces'', using in place of
Newton's laws Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
the Euler–Lagrange equations. Among the generalized forces, those involving the square of the time derivatives are sometimes called centrifugal forces. In the case of motion in a central potential the Lagrangian centrifugal force has the same form as the fictitious centrifugal force derived in a co-rotating frame.See p. 5 in . The companion paper is However, the Lagrangian use of "centrifugal force" in other, more general cases has only a limited connection to the Newtonian definition. In another instance the term refers to the reaction
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
to a centripetal force, or
reactive centrifugal force In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force. In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on th ...
. A body undergoing curved motion, such as
circular motion In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of ro ...
, is accelerating toward a center at any particular point in time. This centripetal acceleration is provided by a centripetal force, which is exerted on the body in curved motion by some other body. In accordance with Newton's third law of motion, the body in curved motion exerts an equal and opposite force on the other body. This
reactive Reactive may refer to: *Generally, capable of having a reaction (disambiguation) *An adjective abbreviation denoting a bowling ball coverstock made of reactive resin *Reactivity (chemistry) *Reactive mind *Reactive programming See also *Reactanc ...
force is exerted ''by'' the body in curved motion ''on'' the other body that provides the centripetal force and its direction is from that other body toward the body in curved motion. Signell, Peter (2002)
"Acceleration and force in circular motion"
''Physnet''. Michigan State University, "Acceleration and force in circular motion", §5b, p. 7.
This reaction force is sometimes described as a ''centrifugal inertial reaction'', that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass. The concept of the reactive centrifugal force is sometimes used in mechanics and engineering. It is sometimes referred to as just ''centrifugal force'' rather than as ''reactive'' centrifugal force although this usage is deprecated in elementary mechanics.


See also

*
Balancing of rotating masses The balancing of rotating bodies is important to avoid vibration. In heavy industrial machines such as gas turbines and electric generators, vibration can cause catastrophic failure, as well as noise and discomfort. In the case of a narrow wheel, ...
*
Centrifugal mechanism of acceleration Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects (see also Fermi acceleration). It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, ther ...
*
Equivalence principle In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (suc ...
*
Folk physics Folk or Folks may refer to: Sociology *Nation *People * Folklore ** Folk art ** Folk dance ** Folk hero ** Folk music *** Folk metal *** Folk punk *** Folk rock ** Folk religion * Folk taxonomy Arts, entertainment, and media * Folk Plus or Folk ...
*
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of th ...
*
Lamm equation The Lamm equationO Lamm: (1929) "Die Differentialgleichung der Ultrazentrifugierung"'' Arkiv för matematik, astronomi och fysik'' 21B No. 2, 1–4 describes the sedimentation and diffusion of a solute under ultracentrifugation in traditional s ...


Notes


References


External links

* {{Authority control Acceleration Fictitious forces Force Mechanics Rotation