HOME

TheInfoList



OR:

Within the field of
developmental biology Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of Regeneration (biology), regeneration, asexual reproduction, metamorphosis, and the growth and di ...
, one goal is to understand how a particular cell develops into a final cell type, known as fate determination. Within an embryo, several processes play out at the cellular and tissue level to create an organism. These processes include
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation re ...
, differentiation, cellular movement and programmed cell death. Each cell in an embryo receives molecular signals from neighboring cells in the form of proteins, RNAs and even surface interactions. Almost all animals undergo a similar sequence of events during very early development, a conserved process known as
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
. During embryogenesis, cells exist in three
germ layers A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce two or three pri ...
, and undergo
gastrulation Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals the blastocyst is reorganized into a multilayered structure known as the gastrula. Be ...
. While embryogenesis has been studied for more than a century, it was only recently (the past 25 years or so) that scientists discovered that a basic set of the same
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
and
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
s are involved in
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
.
Evolutionary conservation In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids ( DNA and RNA) or proteins across species ( orthologous sequences), or within a genome ( paralogous sequences), or between donor and receptor taxa ( ...
is one of the reasons that model systems such as the fly ( Drosophila ''melanogaster''), the mouse ( Mus ''musculus''), and other organisms are used as models to study embryogenesis and developmental biology. Studying
model organism A model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workin ...
s provides information relevant to other animals, including humans. While studying the different model systems, cells fate was discovered to be determined via multiple ways, two of which are by the combination of transcription factors the cells have and by the cell-cell interaction. Cells’ fate determination mechanisms were categorized into three different types, autonomously specified cells, conditionally specified cells, or syncytial specified cells. Furthermore, the cells’ fate was determined mainly using two types of experiments, cell ablation and transplantation. The results obtained from these experiments, helped in identifying the fate of the examined cells.


Cell fate

The development of new molecular tools including
GFP GFP may refer to: Organisations * Gaelic Football Provence, a French Gaelic Athletic Association club * Geheime Feldpolizei, the German secret military police during the Second World War * French Group for the Study of Polymers and their Applicat ...
, and major advances in
imaging technology Imaging is the representation or reproduction of an object's form; especially a visual representation (i.e., the formation of an image). Imaging technology is the application of materials and methods to create, preserve, or duplicate images. ...
including
fluorescence microscopy A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microsc ...
, have made possible the mapping of the
cell lineage Cell lineage denotes the developmental history of a tissue or organ from the fertilized embryo. This is based on the tracking of an organism's cellular ancestry due to the cell divisions and relocation as time progresses, this starts with the orig ...
of ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (ro ...
'' including its
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
. This technique of
fate mapping Fate mapping is a method used in developmental biology to study the embryonic origin of various adult tissues and structures. The "fate" of each cell or group of cells is mapped onto the embryo, showing which parts of the embryo will develop into ...
is used to study cells as they differentiate and gain specified function. Merely observing a cell as it becomes differentiated during
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
provides no indication of the mechanisms that drive the specification. The use of molecular techniques, including gene and protein knock downs, knock outs and overexpression allows investigation into the mechanisms of fate determination. Improvements in imaging tools including live
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a sp ...
and
super resolution microscopy Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techni ...
allow visualization of molecular changes in experimentally manipulated cells as compared to controls. Transplantation experiments can also be used in conjunction with the genetic manipulation and lineage tracing. Newer cell fate determination techniques include lineage tracing performed using inducable Cre-lox transgenic mice, where specific cell populations can be experimentally mapped using reporters like
brainbow Brainbow is a process by which individual neurons in the brain can be distinguished from neighboring neurons using fluorescent proteins. By randomly expressing different ratios of red, green, and blue derivatives of green fluorescent protein in in ...
, a colorful reporter that is useful in the brain and other tissues to follow the differentiation path of a cell. During embryogenesis, for a number of cell cleavages (the specific number depends on the type of organism) all the cells of an embryo will be morphologically and developmentally equivalent. This means, each cell has the same development potential and all cells are essentially interchangeable, thus establishing an
equivalence group An equivalence group is a set of unspecified cells that have the same developmental potential or ability to adopt various fates. Our current understanding suggests that equivalence groups are limited to cells of the same ancestry, also known as sibl ...
. The developmental equivalence of these cells is usually established via transplantation and cell ablation experiments. As embryos mature, more complex fate determination occurs as structures appear, and cells differentiate, beginning to perform specific functions. Under normal conditions, once cells have a specified fate and have undergone
cellular differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
, they generally cannot return to less specified states; however, new research indicates that de-differentiation is possible under certain conditions including wound healing and cancer. The determination of a cell to a particular fate can be broken down into two states where the cell can be specified (committed) or determined. In the state of being committed or specified, the cell type is not yet determined and any bias the cell has toward a certain fate can be reversed or transformed to another fate. If a cell is in a determined state, the cell's fate cannot be reversed or transformed. In general, this means that a cell determined to differentiate into a brain cell cannot be transformed into a skin cell. Determination is followed by differentiation, the actual changes in biochemistry, structure, and function that result in specific cell types. Differentiation often involves a change in appearance as well as function.


Modes of specification

There are three general ways a cell can become specified for a particular fate; they are autonomous specification, conditional specification and syncytial specification.


Autonomous specification

This type of specification results from cell-intrinsic properties; it gives rise to mosaic development. The cell-intrinsic properties arise from a cleavage of a cell with asymmetrically expressed maternal cytoplasmic determinants (proteins, small regulatory RNAs and mRNA). Thus, the fate of the cell depends on factors secreted into its cytoplasm during cleavage. Autonomous specification was demonstrated in 1887 by a French medical student, Laurent Chabry, working on tunicate embryos. This asymmetric cell division usually occurs early in embryogenesis. Positive feedback can create asymmetry from homogeneity. In cases where the external or stimuli that would cause asymmetry are very weak or disorganized, through positive feedback the system can spontaneously pattern itself. Once the feedback has begun, any small initial signaling is magnified and thus produces an effective patterning mechanism. This is normally what occurs in the case of
lateral inhibition In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction ...
in which neighboring cells induce specification via inhibitory or inducing signals (see
Notch signaling The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The ...
). This kind of positive feedback at the single cell level and tissue level is responsible for
symmetry breaking In physics, symmetry breaking is a phenomenon in which (infinitesimally) small fluctuations acting on a system crossing a critical point decide the system's fate, by determining which branch of a bifurcation is taken. To an outside observe ...
, which is an all-or-none process whereas once the symmetry is broken, the cells involved become very different. Symmetry breaking leads to a bistable or multistable system where the cell or cells involved are determined for different cell fates. The determined cells continue on their particular fate even after the initial stimulatory/inhibitory signal is gone, giving the cells a memory of the signal. The specific results of cell ablation and isolation that highlights autonomously specified cells are the following. If ablation of a tissue from a certain cell occurred, the cell will have a missing part. As a result, the removed tissue was autonomously specified since the cell was not able to make up for the missing part .  Furthermore, if specific cells were isolated in a petri dish from the whole structure, these cells will still form the structure or tissue they were going to form initially. In other words, the signaling to form a specific tissue is within the tissue not coming from a central organ or system.


Conditional specification

In contrast to the autonomous specification, this type of specification is a cell-extrinsic process that relies on cues and interactions between cells or from concentration-gradients of
morphogen A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various ...
s. Inductive interactions between neighboring cells is the most common mode of tissue patterning. In this mechanism, one or two cells from a group of cells with the same developmental potential are exposed to a signal (
morphogen A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various ...
) from outside the group. Only the cells exposed to the signal are induced to follow a different developmental pathway, leaving the rest of the
equivalence group An equivalence group is a set of unspecified cells that have the same developmental potential or ability to adopt various fates. Our current understanding suggests that equivalence groups are limited to cells of the same ancestry, also known as sibl ...
unchanged. Another mechanism that determines the cell fate is regional determination (see
Regional specification In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms. Cell fate de ...
). As implied by the name, this specification occurs based on where within the embryo the cell is positioned, it is also known as positional value. This was first observed when
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical E ...
was taken from the prospective thigh region of a chick embryo, was grafted onto the wing region and did not transform to wing tissue, but instead into toe tissue. In conditionally specified cells, the designated cell requires signaling from an exterior cell. Therefore, if the tissue was ablated, the cell will be able to regenerate or signal to reform the initially ablated tissue. In addition, if a belly tissue for example was removed and transplanted in the back, the new forming tissue will be a back tissue. This result is seen because the surrounding cells and tissues influence the newly forming cell.


Syncytial specification

This type of a specification is a hybrid of the autonomous and conditional that occurs in insects. This method involves the action of morphogen gradients within the
syncytium A syncytium (; plural syncytia; from Greek: σύν ''syn'' "together" and κύτος ''kytos'' "box, i.e. cell") or symplasm is a multinucleate cell which can result from multiple cell fusions of uninuclear cells (i.e., cells with a single nucleus) ...
. As there are no cell boundaries in the syncytium, these morphogens can influence nuclei in a concentration-dependent manner. It was discovered that cellularization of the blastoderm took place either during or before the specifications of body regions. Also, one cell could contain more than one nucleus due to fusion of multiple uninuclear cells. As a result, the variable cleavage of the cells will make the cells hard to be committed or determined to one cell fate. At the end of cellularization, the autonomously specified cells become distinguished from the conditionally specified once.


See also

Plant embryogenesis Plant embryonic development, also plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germina ...
, see Lau S ''et al.'', Cell-cell communication in Arabidopsis early embryogenesis. Eur J Cell Biol 2010, 89:225-230. For a good review of the part of the history of morphogen signaling and development see Briscoe J, Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. In systems biology, cell-fate determination is predicted to exhibit certain dynamics, such as attractor-convergence (the attractor can be an equilibrium point, limit cycle or
strange attractor In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain ...
) or oscillatory.


References

{{DEFAULTSORT:Cell Fate Determination Developmental biology