HOME

TheInfoList



OR:

Carbon nanotube chemistry involves
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s, which are used to modify the properties of
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s (CNTs). CNTs can be functionalized to attain desired properties that can be used in a wide variety of applications. The two main methods of CNT functionalization are covalent and non-covalent modifications. Because of their hydrophobic nature, CNTs tend to agglomerate hindering their dispersion in solvents or viscous polymer melts. The resulting nanotube bundles or aggregates reduce the mechanical performance of the final composite. The surface of CNTs can be modified to reduce the hydrophobicity and improve interfacial
adhesion Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can be ...
to a bulk
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
through chemical attachment.


Covalent modification

Covalent modification attaches a functional group onto the carbon nanotube. The functional groups can be attached onto the side wall or ends of the carbon nanotube. The end caps of the carbon nanotubes have the highest reactivity due to its higher pyrimidization angle and the walls of the carbon nanotubes have lower pyrimidization angles which has lower reactivity. Although covalent modifications are very stable, the bonding process disrupts the sp2 hybridization of the carbon atoms because a σ-bond is formed. The disruption of the extended sp2 hybridization typically decreases the conductance of the carbon nanotubes.


Oxidation

The purification and oxidation of carbon nanotubes (CNTs) has been well represented in literature. These processes were essential for low yield production of carbon nanotubes where carbon particles, amorphous carbon particles and coatings comprised a significant percentage of the overall material and are still important for the introduction of surface functional groups. During acid oxidation, the carbon-carbon bonded network of the graphitic layers is broken allowing the introduction of oxygen units in the form of carboxyl,
phenol Phenol (also called carbolic acid) is an aromatic organic compound with the molecular formula . It is a white crystalline solid that is volatile. The molecule consists of a phenyl group () bonded to a hydroxy group (). Mildly acidic, it req ...
ic and lactone groups, which have been extensively exploited for further chemical functionalisation. First studies on oxidation of carbon nanotubes involved a gas-phase reactions with
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
vapor in air, which indiscriminately functionalized the carbon nanotubes with carboxylic, carbonyl or
hydroxyl In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
groups. In liquid-phase reactions, carbon nanotubes were treated with oxidizing solutions of nitric acid or a combination of nitric and
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
to the same effect. However, overoxidation may occur causing the carbon nanotube to break up into fragments, which are known as carbonaceous fragments. Xing et al. revealed sonication assisted oxidation, with sulfuric and nitric acid, of carbon nanotubes and produced carbonyl and carboxyl groups. After the oxidation reaction in acidic solution, treatment with
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%†...
limited the damage on the carbon nanotube network. Single-walled carbon nanotubes can be shortened in a scalable manner using
oleum Oleum (Latin ''oleum'', meaning oil), or fuming sulfuric acid, is a term referring to solutions of various compositions of sulfur trioxide in sulfuric acid, or sometimes more specifically to disulfuric acid (also known as pyrosulfuric acid). Ole ...
(100% H2SO4 with 3% SO3) and nitric acid. The nitric acid cuts carbon nanotubes while the oleum creates a channel. In one type of chemical modification,
aniline Aniline is an organic compound with the formula C6 H5 NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine In organic chemistry, an aromatic amine is an organic compound consisting of an aroma ...
is oxidized to a diazonium intermediate. After expulsion of nitrogen, it forms a covalent bond as an
aryl radical An aryl radical in organic chemistry is a reactive intermediate and an arene compound incorporating one free radical carbon atom as part of the ring structure. As such it is the radical counterpart of the arenium ion. The parent compound is the phen ...
:


Esterification/Amidation

Carboxylic groups are used as the precursor for most esterification and amidation reactions. The carboxylic group is converted into an acyl chloride with the use of thionyl or oxalyl chloride which is then reacted with the desired amide, amine, or alcohol. Carbon nanotubes have been deposited on with silver nanoparticles with the aid of amination reactions. Amide functionalized carbon nanotubes have been shown to chelate silver nanoparticles. Carbon nanotubes modified with acyl chloride react readily with highly branched molecules such as
poly(amidoamine) Poly(amidoamine), or PAMAM, is a class of dendrimer which is made of repetitively branched subunits of amide and amine functional group, functionality. PAMAM dendrimers, sometimes referred to by the trade name Starburst, have been extensively studie ...
, which acts as a template for silver ion and later being reduced by
formaldehyde Formaldehyde ( , ) (systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section F ...
. Amino-modified carbon nanotubes can be prepared by reacting ethylenediamine with an acyl chloride functionalized carbon nanotubes.


Halogenation reactions

Carbon nanotubes can be treated with peroxytrifluroacetic acid to give mainly
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic ...
and trifluroacetic functional groups. The fluorinated carbon nanotubes, through substitution, can be further functionalized with
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important r ...
, guanidine, thiourea and aminosilane. Using the Hunsdiecker reaction, carbon nanotubes treated with nitric acid can react with iodosobenzenediacetate to iodate carbon nanotubes.


Cycloaddition

Also known are protocols for
cycloadditions In organic chemistry, a cycloaddition is a chemical reaction in which "two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity". T ...
such as Diels-Alder reactions, 1,3-dipolar cycloadditions of azomethine ylides and azide–alkyne cycloaddition reactions. One example is a DA reaction assisted by
chromium hexacarbonyl Chromium carbonyl, also known as chromium hexacarbonyl, is the chemical compound with the formula Cr( CO)6. At room temperature the solid is stable to air, although it does have a high vapor pressure and sublimes readily. Cr(CO)6 is zerovalent ...
and high pressure. The ID/IG ratio for reaction with Danishefsky's diene is 2.6. The most well-known 1,3 cycloaddition reaction involves azomethine ylides reacting with carbon nanotubes, which are of great interest. The addition of a pyrrolidine ring can lead to a variety of functional groups such as second-generation
poly(amidoamine) Poly(amidoamine), or PAMAM, is a class of dendrimer which is made of repetitively branched subunits of amide and amine functional group, functionality. PAMAM dendrimers, sometimes referred to by the trade name Starburst, have been extensively studie ...
dendrimers, phthalocyanine addends, perfluoroalkylsilane groups, and amino ethyleneglycol groups. The Diels-cycloaddition reaction can occur, especially on fluorinated carbon nanotubes. They are known to undergo
Diels–Alder reaction In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a peric ...
s with dienes such as 2,3-dimethyl-1,3-
butadiene 1,3-Butadiene () is the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two viny ...
,
anthracene Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the Economic production, production of the red dye alizarin and other dyes ...
, and 2-trimethylsiloxyl-1,3-butadiene.


Radical addition

The modification of carbon nanotubes with
aryl In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used as ...
diazonium salts was studied first by Tour et al. Due to the harsh conditions needed for the ''in situ'' generated diazonium compound, other methods have been explored. Stephenson et al. reported using aniline derivatives with
sodium nitrite Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite ...
in 96% sulfuric acid and ammonium persulfate. Price et al. demonstrated that stirring carbon nanotubes in water and treating with anilines and oxidizing agents proved to be a milder reaction. The diazonium chemistry functionalized carbon nanotubes which was used as a precursor to further modifications.
Suzuki is a Japan, Japanese multinational corporation headquartered in Minami-ku, Hamamatsu, Japan. Suzuki manufactures automobiles, motorcycles, All-terrain vehicle, all-terrain vehicles (ATVs), outboard motor, outboard marine engines, wheelchairs ...
and Heck coupling reactions were performed on iodophenyl-functionalized carbon nanotubes. Wong et al. demonstrated mild photochemical reactions to silylate the carbon nanotubes with trimethoxysilane and hexaphenyldisilane.


Nucleophilic addition

Hirsch et al. conducted
nucleophilic addition In organic chemistry, a nucleophilic addition reaction is an addition reaction where a chemical compound with an electrophilic double or triple bond reacts with a nucleophile, such that the double or triple bond is broken. Nucleophilic additions di ...
s with organolithium and organomagnesium compounds onto carbon nanotubes. With further oxidation in air, they were able to create alkyl-modified carbon nanotubes. Hirsch was also able to show the nucleophilic addition of amines by generating lithium amides, leading to amino-modified carbon nanotubes.


Electrophilic addition

Nanotubes can also be alkylated with alkyl halides using lithium or sodium metal and liquid ammonia (
Birch reduction The Birch reduction is an organic reaction that is used to convert arenes to cyclohexadienes. The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent (traditionally ...
conditions). The initial nanotube salt can function as a polymerization initiator and can react with peroxides to form alkoxy functionalized nanotubes The alkyl and hydroxyl modification of carbon nanotubes was demonstrated with the electrophilic addition of alkylhalides by microwave irradiation. Tessonnier et al. modified carbon nanotubes with amino groups by deprotonating with butyl lithium and reacting with amino substitution. Balaban et al. applied Friedel-Crafts acylation to carbon nanotubes with nitrobenzene at 180 Â°C along with aluminum chloride.


Non-covalent modifications

Non-covalent modifications utilize
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s and π-π interactions by adsorption of polynuclear aromatic compounds,
surfactant Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming ...
s,
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s or
biomolecule A biomolecule or biological molecule is a loosely used term for molecules present in organisms that are essential to one or more typically biological processes, such as cell division, morphogenesis, or development. Biomolecules include large ...
s. Non-covalent modifications do not disrupt the natural configuration of carbon nanotubes with the cost of chemical stability, and is prone to phase separation, dissociation in between two phases, in the solid state.


Polynuclear aromatic compounds

Some common polynuclear aromatic compounds that are functionalized with hydrophilic or hydrophobic moieties are used to solubilize carbon nanotubes into organic or aqueous solvents. Some of these
amphiphile An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a compoun ...
s are phenyl,
naphthalene Naphthalene is an organic compound with formula . It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08  ppm by mass. As an aromati ...
,
phenanthrene Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics and pesticides, e ...
,
pyrene Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is . This yellow solid is the smallest peri-fused PAH (one where the rings are fused through mor ...
and porphyrin systems. The greater π-π stacking of aromatic amphiphiles such as pyrene amphiphiles had the best solubility compared to phenyl amphiphiles with the worse π-π stacking, lead to more solubility in water. These aromatic systems can be modified with amino and carboxylic acid groups prior to functionalizing the carbon nanotubes.


Biomolecules

The interaction between carbon nanotubes and biomolecules has been widely studied because of their potential to be used in biological applications. The modification of the carbon nanotubes with proteins, carbohydrates, and nucleic acids are built with the bottom-up technique. Proteins have high affinity to carbon nanotubes due to their diversity of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s being hydrophobic or hydrophilic. Polysaccharides have been successfully been used to modify carbon nanotubes forming stable hybrids. To make carbon nanotubes soluble in water,
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
s such as lysoglycerophospholipids have been used. The single phospholipid tail wraps around the carbon nanotube, but the double tailed phospholipids did not have the same ability.


Ï€-Ï€ stacking and electrostatic interactions

Molecules that have bifunctionality are used to modify the carbon nanotube. One end of the molecule are polyaromatic compounds that interact with the carbon nanotube through π-π stacking. The other end of the same molecule has a functional group such as amino, carboxyl, or thiol. For example, pyrene derivatives and aryl thiols were used as the linkers for various metal nanobeads such as gold, silver and platinum.


Mechanical interlocking

A particular case of non-covalent modification is the formation of rotaxane-like mechanically interlocked derivatives of single-walled nanotubes (SWNTs). In this strategy, the SWNTs are encapsulated by molecular macrocycle(s), which are either formed around them by macrocyclization, or pre-formed and threaded at a later stage. In MINTs (Mechanically Interlocked NanoTubes), the SWNT and organic macrocycle are linked by means of their topology, through a
mechanical bond Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations of ...
, combining the stability of the covalent strategies -at least one covalent bond must be broken to separate SWNT and macrocycle(s)- with the structural integrity of the classic noncovalent strategies -the C-sp2 network of the SWNT remains intact.


Characterization

A useful tool for the analysis of derivatised nanotubes is
Raman spectroscopy Raman spectroscopy () (named after Indian physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman sp ...
which shows a G-band (G for
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
) for the native nanotubes at 1580 cm−1 and a D-band (D for defect) at 1350  cm−1 when the graphite lattice is disrupted with conversion of sp² to sp³ hybridized carbon. The ratio of both peaks ID/IG is taken as a measure of functionalization. Other tools are
UV spectroscopy Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
where pristine nanotubes show distinct Van Hove singularities where functionalized tubes do not, and simple TGA analysis.


See also

*
Selective chemistry of single-walled nanotubes Selective chemistry of single-walled nanotubes is a field in Carbon nanotube chemistry devoted specifically to the study of functionalization of single-walled carbon nanotubes. Structure and reactivity Reactivity of fullerene molecules with respec ...


Notes


References

{{Commons category, Carbon nanotube functionalization