History
The method of making cement from limestone and low-silica bauxite was patented in France in 1908 by Bied of the Pavin de Lafarge Company. The initial development was as a result of the search for a cement offering sulfate resistance. The cement was known as "Ciment fondu" in French. Subsequently, its other special properties were discovered, and these led to its future in niche applications. By the 2010s, the product was found in the US market under the name FONDAG cement (FOND Aluminous Aggregate), sometimes referred to as ALAG (ALuminous AGgregate). FONDAG cement is a mix of up to 40 percent alumina, stable at high temperatures and thermal cycling fromComposition
The main active constituent of calcium aluminate cements is monocalcium aluminate (CaAl2O4, CaO · Al2O3, or CA in the cement chemist notation). It usually contains other calcium aluminates as well as a number of less reactive phases deriving from impurities in the raw materials. Rather a wide range of compositions is encountered, depending on the application and the purity of aluminium source used. Constituents of some typical formulations include: The mineral phases all take the form of solid solutions with somewhat variable compositionsManufacture
The cement is made by fusing together a mixture of a calcium-bearing material (normally calcium oxide from limestone) and an aluminium-bearing material (normally bauxite for general purposes, or refined alumina for white and refractory cements). The liquified mixture cools to a vesicular, basalt-likeReaction with water
The hydration reactions of calcium aluminate cements are very complex. The strength-developing phases are monocalcium aluminate, dodeca-calcium hepta-aluminate and belite. Calcium aluminoferrite, monocalcium dialuminate, gehlenite and pleochroite contribute little to strength. The reactive aluminates react with water initially to form a mixture of:Applications
Because of their relatively high cost, calcium aluminate cements are used in a number of restricted applications where performance achieved justifies costs: * in construction concretes, where rapid strength development is required, even at low temperatures. * as a protective liner against microbial corrosion such as in sewer infrastructure. * in refractory concretes, where strength is required at high temperatures. * as a component in blended cement formulations, for various properties such as ultra-rapid strength development and controlled expansion are required. * in sewer networks for their high resistance to biogenic sulfide corrosion.Sewer networks applications
The biogenic corrosion resistance of calcium aluminate cements is used today in three main applications: * Ductile iron pipe for waste water have an internal lining made of calcium aluminate cement mortar, * Concrete pipes for sewerage can be made either with full mass calcium aluminate cement concrete or with an internal liner of calcium aluminate cement mortar, * Rehabilitation of man-accessible sewer infrastructures with 100% calcium aluminate mortar using one of the following installation methods: low pressure wet spray, spinning head wet spray or high pressure dry spray (gunite).Problems
Incorrect use of calcium aluminate cements has led to construction problems, especially during the third quarter of the 20th century when this type of cement was used because of its faster hardening properties. After several years some of the buildings and structures collapsed due to degradation of the cement and many had to be torn down or reinforced. Heat and humidity accelerate the degradation process called "conversion". On 8 February 1974 the roof of a swimming pool collapsed in the UK. In 1984, the roof of a factory building in Uherské Hradiště in Czechoslovakia (built 1952) collapsed, killing 18 people. In Madrid, Spain, a large housing block nicknamed Korea (because it was built to house Americans during the Korean War), built 1951~1954 was affected and had to be torn down in 2006. Also in Madrid the Vicente Calderón soccer stadium was affected and had to be partially rebuilt and reinforced.http://www.elmundo.es/papel/2007/02/07/madrid/2082060.html {{dead link, date=December 2018References