Cadmium-113m
   HOME

TheInfoList



OR:

Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long
half-lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
. The two natural radioactive isotopes are 113Cd ( beta decay, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd ( double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. At least three isotopes—110Cd, 111Cd, and 112Cd—are absolutely stable (except, theoretically, to
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
). Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours). The known isotopes of cadmium range in atomic mass from 94.950  u (95Cd) to 131.946 u (132Cd). The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
before the second most abundant stable isotope, 112Cd, is electron capture and the primary modes after are beta emission and electron capture. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
before 112Cd is element 47 ( silver) and the primary product after is element 49 ( indium). A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.


List of isotopes

, - , 95Cd , style="text-align:right" , 48 , style="text-align:right" , 47 , 94.94987(64)# , 5# ms , , , 9/2+# , , , - , 96Cd , style="text-align:right" , 48 , style="text-align:right" , 48 , 95.93977(54)# , 1# s , β+ , 96Ag , 0+ , , , - , rowspan=2, 97Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 49 , rowspan=2, 96.93494(43)# , rowspan=2, 2.8(6) s , β+ (>99.9%) , 97Ag , rowspan=2, 9/2+# , rowspan=2, , rowspan=2, , - , β+, p (<.1%) , 96Pd , - , rowspan=2, 98Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 50 , rowspan=2, 97.92740(8) , rowspan=2, 9.2(3) s , β+ (99.975%) , 98Ag , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (.025%) , 97Ag , - , style="text-indent:1em" , 98mCd , colspan="3" style="text-indent:2em" , 2427.5(6) keV , 190(20) ns , , , 8+# , , , - , rowspan=3, 99Cd , rowspan=3 style="text-align:right" , 48 , rowspan=3 style="text-align:right" , 51 , rowspan=3, 98.92501(22)# , rowspan=3, 16(3) s , β+ (99.78%) , 99Ag , rowspan=3, (5/2+) , rowspan=3, , rowspan=3, , - , β+, p (.21%) , 98Pd , - , β+, α (10−4%) , 95Rh , - , 100Cd , style="text-align:right" , 48 , style="text-align:right" , 52 , 99.92029(10) , 49.1(5) s , β+ , 100Ag , 0+ , , , - , 101Cd , style="text-align:right" , 48 , style="text-align:right" , 53 , 100.91868(16) , 1.36(5) min , β+ , 101Ag , (5/2+) , , , - , 102Cd , style="text-align:right" , 48 , style="text-align:right" , 54 , 101.91446(3) , 5.5(5) min , β+ , 102Ag , 0+ , , , - , 103Cd , style="text-align:right" , 48 , style="text-align:right" , 55 , 102.913419(17) , 7.3(1) min , β+ , 103Ag , 5/2+ , , , - , 104Cd , style="text-align:right" , 48 , style="text-align:right" , 56 , 103.909849(10) , 57.7(10) min , β+ , 104Ag , 0+ , , , - , 105Cd , style="text-align:right" , 48 , style="text-align:right" , 57 , 104.909468(12) , 55.5(4) min , β+ , 105Ag , 5/2+ , , , - , 106Cd , style="text-align:right" , 48 , style="text-align:right" , 58 , 105.906459(6) , colspan=3 align=center, Observationally StableBelieved to decay by β+β+ to 106Pd with a half-life over 4.1×1020 years , 0+ , 0.0125(6) , , - , 107Cd , style="text-align:right" , 48 , style="text-align:right" , 59 , 106.906618(6) , 6.50(2) h , β+ , 107mAg , 5/2+ , , , - , 108Cd , style="text-align:right" , 48 , style="text-align:right" , 60 , 107.904184(6) , colspan=3 align=center, Observationally StableBelieved to decay by β+β+ to 108Pd with a half-life over 4.1×1017 years , 0+ , 0.0089(3) , , - , 109Cd , style="text-align:right" , 48 , style="text-align:right" , 61 , 108.904982(4) , 461.4(12) d , EC , 109Ag , 5/2+ , , , - , style="text-indent:1em" , 109m1Cd , colspan="3" style="text-indent:2em" , 59.6(4) keV , 12(2) µs , , , 1/2+ , , , - , style="text-indent:1em" , 109m2Cd , colspan="3" style="text-indent:2em" , 463.0(5) keV , 10.9(5) µs , , , 11/2 , , , - , 110Cd , style="text-align:right" , 48 , style="text-align:right" , 62 , 109.9030021(29) , colspan=3 align=center, StableTheoretically capable of spontaneous fission , 0+ , 0.1249(18) , , - , 111Cd
Fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
, style="text-align:right" , 48 , style="text-align:right" , 63 , 110.9041781(29) , colspan=3 align=center, Stable , 1/2+ , 0.1280(12) , , - , style="text-indent:1em" , 111mCd , colspan="3" style="text-indent:2em" , 396.214(21) keV , 48.50(9) min , IT , 111Cd , 11/2− , , , - , 112Cd , style="text-align:right" , 48 , style="text-align:right" , 64 , 111.9027578(29) , colspan=3 align=center, Stable , 0+ , 0.2413(21) , , - , 113Cd
Primordial Primordial may refer to: * Primordial era, an era after the Big Bang. See Chronology of the universe * Primordial sea (a.k.a. primordial ocean, ooze or soup). See Abiogenesis * Primordial nuclide, nuclides, a few radioactive, that formed before ...
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transfer ...
, style="text-align:right" , 48 , style="text-align:right" , 65 , 112.9044017(29) , 8.04(5)×1015 y , β , 113In , 1/2+ , 0.1222(12) , , - , rowspan=2 style="text-indent:1em" , 113mCd , rowspan=2 colspan="3" style="text-indent:2em" , 263.54(3) keV , rowspan=2, 14.1(5) y , β (99.86%) , 113In , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , IT (.139%) , ''113Cd'' , - , 114Cd , style="text-align:right" , 48 , style="text-align:right" , 66 , 113.9033585(29) , colspan=3 align=center, Observationally StableBelieved to undergo ββ decay to 114Sn with a half-life over 6.4×1018 years , 0+ , 0.2873(42) , , - , 115Cd , style="text-align:right" , 48 , style="text-align:right" , 67 , 114.9054310(29) , 53.46(5) h , β , 115mIn , 1/2+ , , , - , style="text-indent:1em" , 115mCd , colspan="3" style="text-indent:2em" , 181.0(5) keV , 44.56(24) d , β , 115mIn , (11/2)− , , , - , 116Cd , style="text-align:right" , 48 , style="text-align:right" , 68 , 115.904756(3) , 2.8(2)×1019 y , ββ , 116Sn , 0+ , 0.0749(18) , , - , 117Cd , style="text-align:right" , 48 , style="text-align:right" , 69 , 116.907219(4) , 2.49(4) h , β , 117mIn , 1/2+ , , , - , style="text-indent:1em" , 117mCd , colspan="3" style="text-indent:2em" , 136.4(2) keV , 3.36(5) h , β , 117mIn , (11/2)− , , , - , 118Cd , style="text-align:right" , 48 , style="text-align:right" , 70 , 117.906915(22) , 50.3(2) min , β , 118In , 0+ , , , - , 119Cd , style="text-align:right" , 48 , style="text-align:right" , 71 , 118.90992(9) , 2.69(2) min , β , 119mIn , (3/2+) , , , - , style="text-indent:1em" , 119mCd , colspan="3" style="text-indent:2em" , 146.54(11) keV , 2.20(2) min , β , 119mIn , (11/2−)# , , , - , 120Cd , style="text-align:right" , 48 , style="text-align:right" , 72 , 119.90985(2) , 50.80(21) s , β , 120In , 0+ , , , - , 121Cd , style="text-align:right" , 48 , style="text-align:right" , 73 , 120.91298(9) , 13.5(3) s , β , 121mIn , (3/2+) , , , - , style="text-indent:1em" , 121mCd , colspan="3" style="text-indent:2em" , 214.86(15) keV , 8.3(8) s , β , 121mIn , (11/2−) , , , - , 122Cd , style="text-align:right" , 48 , style="text-align:right" , 74 , 121.91333(5) , 5.24(3) s , β , 122In , 0+ , , , - , 123Cd , style="text-align:right" , 48 , style="text-align:right" , 75 , 122.91700(4) , 2.10(2) s , β , 123mIn , (3/2)+ , , , - , rowspan=2 style="text-indent:1em" , 123mCd , rowspan=2 colspan="3" style="text-indent:2em" , 316.52(23) keV , rowspan=2, 1.82(3) s , β , 123In , rowspan=2, (11/2−) , rowspan=2, , rowspan=2, , - , IT , 123Cd , - , 124Cd , style="text-align:right" , 48 , style="text-align:right" , 76 , 123.91765(7) , 1.25(2) s , β , 124In , 0+ , , , - , 125Cd , style="text-align:right" , 48 , style="text-align:right" , 77 , 124.92125(7) , 0.65(2) s , β , 125mIn , (3/2+)# , , , - , style="text-indent:1em" , 125mCd , colspan="3" style="text-indent:2em" , 50(70) keV , 570(90) ms , β , 125In , 11/2−# , , , - , 126Cd , style="text-align:right" , 48 , style="text-align:right" , 78 , 125.92235(6) , 0.515(17) s , β , 126In , 0+ , , , - , 127Cd , style="text-align:right" , 48 , style="text-align:right" , 79 , 126.92644(8) , 0.37(7) s , β , 127mIn , (3/2+) , , , - , 128Cd , style="text-align:right" , 48 , style="text-align:right" , 80 , 127.92776(32) , 0.28(4) s , β , 128In , 0+ , , , - , rowspan=2, 129Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 81 , rowspan=2, 128.93215(32)# , rowspan=2, 242(8) ms , β (>99.9%) , 129In , rowspan=2, 3/2+# , rowspan=2, , rowspan=2, , - , IT (<.1%) , 129Cd , - , style="text-indent:1em" , 129mCd , colspan="3" style="text-indent:2em" , 0(200)# keV , 104(6) ms , , , 11/2−# , , , - , rowspan=2, 130Cd , rowspan=2 style="text-align:right" , 48 , rowspan=2 style="text-align:right" , 82 , rowspan=2, 129.9339(3) , rowspan=2, 162(7) ms , β (96%) , 130In , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (4%) , 129In , - , 131Cd , style="text-align:right" , 48 , style="text-align:right" , 83 , 130.94067(32)# , 68(3) ms , , , 7/2−# , , , - , 132Cd , style="text-align:right" , 48 , style="text-align:right" , 84 , 131.94555(54)# , 97(10) ms , , , 0+ , , * Hyperdeformation is predicted to be found in 107Cd.


Cadmium-113m

Cadmium-113m is a cadmium radioisotope and nuclear isomer with a half-life of 14.1 years. In a normal thermal reactor, it has a very low fission product yield, plus its large neutron capture cross section means that most of even the small amount produced is destroyed in the course of the
nuclear fuel Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoing ...
's burnup; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 113mCd at higher yields.


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Authority control Cadmium Cadmium