CRF Polytope
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a Blind polytope is a
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
composed of
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, f ...
facets A facet is a flat surface of a geometric shape, e.g., of a cut gemstone. Facet may also refer to: Arts, entertainment, and media * ''Facets'' (album), an album by Jim Croce * ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
. The category was named after the German couple Gerd and
Roswitha Blind Roswitha Blind (also published as Roswitha Hammer) is a German mathematician, specializing in convex geometry, discrete geometry, and polyhedral combinatorics, and a politician and organizer for the Social Democratic Party of Germany in Stuttgart ...
, who described them in a series of papers beginning in 1979. It generalizes the set of
semiregular polyhedra In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. Definitions In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on ...
and
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that isohedral, each face must be the same polygon, or that the same polygons join around each Vertex (geometry), ver ...
s to higher dimensions.


Uniform cases

The set of convex uniform 4-polytopes (also called semiregular 4-polytopes) are completely known cases, nearly all grouped by their
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
s, sharing symmetries of the
convex regular 4-polytope In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regu ...
s and prismatic forms. Set of convex
uniform 5-polytope In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets. The complete set of convex uniform 5-polytopes ...
s,
uniform 6-polytope In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, bu ...
s,
uniform 7-polytope In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose ...
s, etc are largely enumerated as Wythoff constructions, but not known to be complete.


Other cases

Pyramidal forms: (4D) # (''Tetrahedral pyramid'', ( ) ∨ , a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
base, and 4 tetrahedral sides, a lower symmetry name of regular
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
.) #
Octahedral pyramid In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one, the triangular pyramids ...
, ( ) ∨ , an
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
base, and 8
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
sides meeting at an apex. #
Icosahedral pyramid The icosahedral pyramid is a four-dimensional convex polytope, bounded by one icosahedron as its base and by 20 triangular pyramid cells which meet at its apex. Since an icosahedron's circumradius is less than its edge length,, circumradius sqrt ...
, ( ) ∨ , an
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
base, and 20
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
sides. Bipyramid forms: (4D) #
Tetrahedral bipyramid In 4-dimensional geometry, the tetrahedral bipyramid is the direct sum of a tetrahedron and a segment, + . Each face of a central tetrahedron is attached with two tetrahedra, creating 8 tetrahedral cells, 16 triangular faces, 14 edges, and 6 verti ...
, + , a tetrahedron center, and 8 tetrahedral cells on two side. # (''Octahedral bipyramid'', + , an octahedron center, and 8 tetrahedral cells on two side, a lower symmetry name of regular
16-cell In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mi ...
.) #
Icosahedral bipyramid In 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, + . Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 ver ...
, + , an icosahedron center, and 40 tetrahedral cells on two sides. Augmented forms: (4D) *
Rectified 5-cell In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In t ...
augmented with one
octahedral pyramid In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one, the triangular pyramids ...
, adding one vertex for 13 total. It retains 5 tetrahedral cells, reduced to 4 octahedral cells and adds 8 new tetrahedral cells.


Convex Regular-Faced Polytopes

Blind polytopes are a subset of convex regular-faced polytopes (CRF).https://bendwavy.org/klitzing/explain/johnson.htm#crf This much larger set allows ''CRF 4-polytopes'' to have
Johnson solid In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that isohedral, each face must be the same polygon, or that the same polygons join around each Vertex (geometry), ver ...
s as cells, as well as regular and semiregular polyhedral cells. For example, a
cubic bipyramid In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, + . Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A ...
has 12
square pyramid In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid, ...
cells.


References

* * * *


External links


Blind polytope

Convex regular-faced polytopes
{{geometry-stub Polytopes