HOME
*



picture info

Tetrahedral Bipyramid
In 4-dimensional geometry, the tetrahedral bipyramid is the direct sum of a tetrahedron and a segment, + . Each face of a central tetrahedron is attached with two tetrahedra, creating 8 tetrahedral cells, 16 triangular faces, 14 edges, and 6 vertices,.https://www.bendwavy.org/klitzing/incmats/tedpy.htm A tetrahedral bipyramid can be seen as two tetrahedral pyramids augmented together at their base. It is the dual of a tetrahedral prism, , so it can also be given a Coxeter-Dynkin diagram, , and both have Coxeter notation symmetry ,3,3 order 48. Being convex with all regular cells (tetrahedra) means that it is a Blind polytope. This bipyramid exists as the cells of the dual of the uniform rectified 5-simplex, and rectified 5-cube or the dual of any uniform 5-polytope with a tetrahedral prism vertex figure. And, as well, it exists as the cells of the dual to the rectified 24-cell honeycomb. See also * Triangular bipyramid - A lower dimensional analogy of the tetrahedral bipyra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Bipyramid-ortho
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Prism
In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices. It is one of 18 uniform polyhedral prisms created by using uniform prisms to connect pairs of parallel Platonic solids and Archimedean solids. Images Alternative names # Tetrahedral dyadic prism ( Norman W. Johnson) # Tepe (Jonathan Bowers: for tetrahedral prism) # Tetrahedral hyperprism # Digonal antiprismatic prism # Digonal antiprismatic hyperprism Structure The tetrahedral prism is bounded by two tetrahedra and four triangular prisms. The triangular prisms are joined to each other via their square faces, and are joined to the two tetrahedra via their triangular faces. Projections The tetrahedron-first orthographic projection of the tetrahedral prism into 3D space has a tetrahedral projection envelope. Both tetrahedral cells project onto thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecahedral Bipyramid
In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, + . Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles triangular faces, 70 edges, and 22 vertices. A dodecahedral bipyramid can be seen as two dodecahedral pyramids augmented together at their base. It is the dual of a icosahedral prism. See also * Tetrahedral bipyramid * Cubic bipyramid * Icosahedral bipyramid In 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, + . Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 ver ... References External links Dodecahedral tegum 4-polytopes {{Polychora-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Bipyramid
In 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, + . Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base. It is the dual of a octahedral prism. Being convex and regular-faced, it is a CRF polytope. Coordinates It is a Hanner polytope with coordinates: * (0, 0, 0; ±1) * (±1, ±1, ±1; 0) See also * Tetrahedral bipyramid * Dodecahedral bipyramid In 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, + . Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles trian ... * Icosahedral bipyramid References External links Cubic tegum 4-polytopes {{Polychora-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

16-cell
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid .Matila Ghyka, ''The Geometry of Art and Life'' (1977), p.68 It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes'', and is analogous to the octahedron in three dimensions. It is Coxeter's \beta_4 polytope. Conway's name for a cross-polytope is orthoplex, for ''orthant complex''. The dual polytope is the tesseract (4-cube), which it can be combined with to form a compound figure. The 16-cell has 16 cells as the tesseract has 16 vertices. Geometry The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). Each of its 4 successor convex regular 4-polytopes can be constructed as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Bipyramid
In geometry, the triangular bipyramid (or dipyramid) is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces. As the name suggests, it can be constructed by joining two tetrahedra along one face. Although all its faces are congruent and the solid is face-transitive, it is not a Platonic solid because some vertices adjoin three faces and others adjoin four. The bipyramid whose six faces are all equilateral triangles is one of the Johnson solids, (). As a Johnson solid with all faces equilateral triangles, it is also a deltahedron. Formulae The following formulae for the height (H), surface area (A) and volume (V) can be used if all faces are regular, with edge length L: :H = L\cdot \frac \approx L\cdot 1.632993162 :A = L^2 \cdot \frac \approx L^2\cdot 2.598076211 :V = L^3 \cdot \frac \approx L^3\cdot 0.235702260 Dual polyhedron The dual polyhedron of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 24-cell Honeycomb
In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells. Alternate names * Rectified icositetrachoric tetracomb * Rectified icositetrachoric honeycomb * Cantellated 16-cell honeycomb * Bicantellated tesseractic honeycomb Symmetry constructions There are five different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored rectified 24-cell and tesseract facets. The tetrahedral prism vertex figure contains 4 rectified 24-cells capped by two opposite tesseracts. See also Regular and uniform honeycombs in 4-space: *Tesseractic honeycomb *16-cell honeycomb *24-cell honeycomb *Truncated 24-cell honeycomb *Snub 24-cell honeycomb * 5-cell honeycomb * Truncated 5-cell honeycomb * Omnitruncated 5-cell honeycomb References * Coxeter, H.S.M. ''Regu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 5-cube
In five-dimensional geometry, a rectified 5-cube is a convex uniform 5-polytope, being a rectification of the regular 5-cube. There are 5 degrees of rectifications of a 5-polytope, the zeroth here being the 5-cube, and the 4th and last being the 5-orthoplex. Vertices of the rectified 5-cube are located at the edge-centers of the 5-cube. Vertices of the birectified 5-cube are located in the square face centers of the 5-cube. Rectified 5-cube Alternate names * Rectified penteract (acronym: rin) (Jonathan Bowers) Construction The rectified 5-cube may be constructed from the 5-cube by truncating its vertices at the midpoints of its edges. Coordinates The Cartesian coordinates of the vertices of the rectified 5-cube with edge length \sqrt is given by all permutations of: :(0,\ \pm1,\ \pm1,\ \pm1,\ \pm1) Images Birectified 5-cube E. L. Elte identified it in 1912 as a semiregular polytope, identifying it as Cr52 as a second rectification of a 5-dimensional cross polytope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectified 5-simplex
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three unique degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the ''rectified 5-simplex'' are located at the edge-centers of the ''5-simplex''. Vertices of the ''birectified 5-simplex'' are located in the triangular face centers of the ''5-simplex''. Rectified 5-simplex In five-dimensional geometry, a rectified 5-simplex is a uniform 5-polytope with 15 vertices, 60 edges, 80 triangular faces, 45 cells (30 tetrahedral, and 15 octahedral), and 12 4-faces (6 5-cell and 6 rectified 5-cells). It is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as . E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S. Alternate names * Rectified hexateron (Acronym: rix) (Jonathan Bowers) Coordinates The vertices of the rectified 5-simplex can be more simply positioned on a hyp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Notation
In geometry, Coxeter notation (also Coxeter symbol) is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. Reflectional groups For Coxeter groups, defined by pure reflections, there is a direct correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the bracket notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors. The Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the ''A''''n'' group is represented by ''n''−1 to imply ''n'' nodes connected by ''n−1'' order-3 branches. Exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]