HOME

TheInfoList



OR:

The Betterton-Kroll Process is a
pyrometallurgical Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable ...
process for refining
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
from lead bullion(lead that still contains significant amounts of impurities). Developed by William Justin Kroll in 1922, the Betterton–Kroll process is one of the final steps in conventional
lead smelting Plants for the production of lead are generally referred to as lead smelters. Primary lead production begins with sintering. Concentrated lead ore is fed into a sintering machine with iron, silica, limestone fluxes, coke, soda ash, pyrite, zinc, ...
. After gold, copper, and silver are removed from the lead, significant amounts of
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
and
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient t ...
remain. The Betterton–Kroll process is used to remove these impurities. In the process,
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
are added to the molten lead at temperatures around 380 °C. The calcium and magnesium react with the bismuth and antimony in the bullion to form
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
s with a higher melting point, which then can be skimmed off of the surface. This process leaves behind lead with less than 0.01 percent bismuth by weight. The process is crucial to cheap industrial lead smelting and offers significant advantages over more expensive processes like the
Betts Electrolytic process The Betts electrolytic process is an industrial process for purification of lead from bullion. Lead obtained from its ores is impure because lead is a good solvent for many metals. Often these impurities are tolerated, but the Betts electrolytic p ...
and fractional crystallization.


Development

In the early 1920s, William Justin Kroll developed a process for removing bismuth from lead by the addition of calcium. However, it was not commercially viable until Jesse Oatman Betterton improved the process by adding magnesium to the process, which decreased the total amount of metal required in order to refine the lead.


Chemical Process

The key to the Betterton–Kroll process is adding calcium and magnesium metal to molten lead bullion. The metals react with impurities in the lead and form a solid film on the surface, which can be easily removed, leaving behind much purer lead.


Metal Addition

The Betterton–Kroll process begins by heating lead bullion to around 500 °C. A calcium-magnesium alloy is added to the solution, which melts into the bullion in 15–20 minutes. The lead mixture is then cooled to the liquidus point (the lowest temperature that the alloy is completely liquid), which around 320-380 °C. At the lower temperature, the calcium and magnesium react with bismuth and antimony in the lead bullion in the following way: Ca + 2Mg + 2Bi -> CaMg2Bi2(s) Ca + 2Mg + 2Sb -> CaMg2Sb2(s)


Removal of Dross

The alloys produced have a melting point greater than the rest of the metal, so they form a solid film, or
dross Dross is a mass of solid impurities floating on a molten metal or dispersed in the metal, such as in wrought iron. It forms on the surface of low- melting-point metals such as tin, lead, zinc or aluminium or alloys by oxidation of the metal. For ...
, on the surface that can be skimmed off. Molten lead can remain trapped in the dross, so the dross is often hydraulically pressed in order to squeeze out any remaining lead. Through this process, the bismuth in solution can be reduced to under 0.01 wt. %(percent by weight).


Bismuth Recovery

After the dross is skimmed off, it can be treated to recover the bismuth. The most common process for this is
chlorination Chlorination may refer to: * Chlorination reaction In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transform ...
of the calcium-magnesium-bismuth alloy. In the chlorination process, chlorine reacts with other metals in the dross and leaves behind high-purity bismuth.


Variations and Alternatives

Although the Betterton–Kroll process is the most widely used method, it has variations and alternatives that can provide advantages for specific use cases.


Molten Salt Reactions

Instead of calcium and magnesium metal being added directly to the mixture, oxides of the metals mixed with other
molten salt Molten salt is salt which is solid at standard temperature and pressure but enters the liquid phase due to elevated temperature. Regular table salt has a melting point of 801 °C (1474°F) and a heat of fusion of 520 J/g.Journal of Chemical T ...
s can be added to the solution. Once in the mixture at high temperature, electrodes can be used to decompose the salts into the metal and oxygen gas, so the calcium and magnesium are free to form alloys in the solution. For calcium oxide, the reaction that occurs is: CaO -> Ca + 1/2O2 Because the calcium is produced by a reaction and doesn't spend time exposed to air, method prevents loss from oxidation. Another advantage of this method is that salts of calcium are often cheaper than calcium metal.


Use of Centrifuge

Instead of skimming the dross off the top of the molten bullion, the calcium and magnesium can be combined with the lead bullion in a
centrifuge A centrifuge is a device that uses centrifugal force to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or ...
. When the centrifuge is spun, the molten lead separates out of the dross more completely than just waiting for the dross to float to the top. This process also removes the need to hydraulically press the dross after extraction because very little lead ends up trapped in the dross.


Betts Electrolytic Process

The Betterton–Kroll process can only reduce the bismuth concertation to about 0.01% by mass. If higher purity is required, the
Betts Electrolytic process The Betts electrolytic process is an industrial process for purification of lead from bullion. Lead obtained from its ores is impure because lead is a good solvent for many metals. Often these impurities are tolerated, but the Betts electrolytic p ...
is used. However, due to the significant energy and equipment requirements of the Betts process, the Betterton–Kroll process is preferable if that high level of purity is not needed.


Fractional Crystallization

Another way to separate the bullion is through fractional crystallization and the pattinson process. This process used the different melting points of the metals in the solution in order to separate them out. Through fractional crystallization, the metals silver, copper and bismuth can be separated out of the lead in one step. However, this process is not very effective at removing bismuth because of how close the melting points of lead and bismuth are to each other.


See also

*
Lead smelter Plants for the production of lead are generally referred to as lead smelters. Primary lead production begins with sintering. Concentrated lead ore is fed into a sintering machine with iron, silica, limestone fluxes, coke, soda ash, pyrite, ...
*
Lead smelting Plants for the production of lead are generally referred to as lead smelters. Primary lead production begins with sintering. Concentrated lead ore is fed into a sintering machine with iron, silica, limestone fluxes, coke, soda ash, pyrite, zinc, ...


References

{{DEFAULTSORT:Betterton-Kroll Process Industrial processes Bismuth Lead