HOME

TheInfoList



OR:

A biarc is a smooth curve formed from two circular arcs. In order to make the biarc smooth ( ''G''1 continuous), the two arcs should have the same
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
at the connecting point where they meet. Biarcs are commonly used in
geometric modeling __NOTOC__ Geometric modeling is a branch of applied mathematics and computational geometry that studies methods and algorithms for the mathematical description of shapes. The shapes studied in geometric modeling are mostly two- or three-dimensi ...
and
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great de ...
. They can be used to
approximate An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ' ...
splines and other
plane curves In mathematics, a plane curve is a curve in a plane that may be either a Euclidean plane, an affine plane or a projective plane. The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic p ...
by placing the two outer endpoints of the biarc along the curve to be approximated, with a tangent that matches the curve, and then choosing a middle point that best fits the curve. This choice of three points and two tangents determines a unique pair of circular arcs, and the locus of middle points for which these two arcs form a biarc is itself a circular arc. In particular, to approximate a
Bézier curve A Bézier curve ( ) is a parametric curve used in computer graphics and related fields. A set of discrete "control points" defines a smooth, continuous curve by means of a formula. Usually the curve is intended to approximate a real-world shape t ...
in this way, the middle point of the biarc should be chosen as the incenter of the triangle formed by the two endpoints of the Bézier curve and the point where their two tangents meet. More generally, one can approximate a curve by a smooth sequence of biarcs; using more biarcs in the sequence will in general improve the approximation's closeness to the original curve.


Examples of biarc curves

  1. In the below examples biarcs A(J)B are subtended by the chord AB, and J is the join point. Tangent vector at the start point A is \mathbf(\alpha), and \mathbf(\beta) is the tangent at the end point B:
  2. Fig. 2 shows six examples of biarcs AJB. * Biarc 1 is drawn with \alpha=100^\circ,\;\beta=30^\circ. Biarcs 2-6 have \alpha=100^\circ,\;\beta=-30^\circ. * In examples 1, 2, 6 curvature changes sign, and the join point J is also the inflection point. Biarc 3 includes the straight line segment JB. * Biarcs 1–4 are ''short'' in the sense that they do not turn near endpoints. Alternatively, biarcs 5,6 are ''long'': turning near one of endpoints means that they intersect the left or the right complement of the chord to the infinite straight line. * Biarcs 2–6 share end tangents. They can be found in the lower fragment of Fig. 3, among the family of biarcs with common tangents.
  3. Fig. 3 shows two examples of biarc families, sharing end points and end tangents.
  4. Fig. 4 shows two examples of biarc families, sharing end points and end tangents, end tangents being parallel: \alpha=\beta.
  5. Fig. 5 shows specific families with either
Different colours in figures 3, 4, 5 are explained below as subfamilies \color\mathcal^, \color\mathcal^_1, \color\mathcal^_2. In particular, for biarcs, shown in brown on shaded background ( lens-like or lune-like), the following holds: * the total rotation (turning angle) of the curve is exactly \beta-\alpha (not \beta-\alpha\pm 2\pi, which is the rotation for other biarcs); * \sgn(\alpha+\beta)=\sgn(k_2-k_1): the sum \alpha+\beta is the angular width of the lens/lune, covering the biarc, whose sign corresponds to either increasing (+1) or decreasing curvature (−1) of the biarc, according to generalized Vogt's theorem ().


Family of biarcs with common end tangents

A family of biarcs with common end points A = (-c,0), B = (c,0), and common end tangents (1) is denoted as \mathcal(p;\,\alpha,\beta,c), or, briefly, as \mathcal(p), p being the family parameter. Biarc properties are described below in terms of article.
  1. Constructing of a biarc is possible if
  2. Denote * k_1, \theta_1 and L_1  the curvature, the turning angle and the length of the arc AJ:    \theta_1 = k_1 L_1; * k_2, \theta_2 and L_2  the same for the arc JB:    \theta_2=k_2L_2. Then k_1(p) = -\frac 1 c \left(\sin\alpha+p^\sin\omega\right),\quad k_2(p) = \frac 1 c \left(\sin\beta+p\sin\omega\right),\quad\text\quad \omega=\frac2 (due to , \sin\omega\not=0). Turning angles: \theta_1(p)=2\arg\left(e^ +p^\right),\quad \theta_2(p)=2\arg\left(e^ +p\, e^\right).
  3. The locus of join points J is the circle X_J(p)=\frac,\quad Y_J(p)=\frac,\quad\text\quad \gamma=\frac2 (shown dashed in Fig.3, Fig.5). This circle (straight line if \gamma=0, Fig.4) passes through points A,B, the tangent at A being \mathbf(\gamma). Biarcs intersect this circle under the constant angle  -\omega.
  4. Tangent vector to the biarc \mathcal(p) at the join point is \mathbf\left(\tau_\right), where \tau_(p)= \arctan \dfrac.
  5. Biarcs with p = \pm1 have the join point on the Y-axis (X_J=0), and yield the minimal curvature jump, \min\left, k_2(p)-k_1(p)\, at J.
  6. ''Degenerate biarcs'' are: * Biarc \mathcal(0): as p \to 0, J(p) \to A, arc AJ vanishes. * Biarc \mathcal(\infty): as p \to \pm\infty, J(p) \to B, arc JB vanishes. * Discontinuous biarc \mathcal(p^\ast) includes straight line AP_\infty J or JP_\infty B, and passes through the infinite point P_\infty: p^\ast= \begin -\dfrac, & \text\; , \alpha, \geqslant, \beta, \quad(, \alpha, =\pi\;\Longrightarrow\; p^\ast=-\infty),\\ ex -\dfrac, & \text\; , \alpha, \leqslant, \beta, \quad(, \beta, =\pi\;\Longrightarrow\; p^\ast=0). \end Darkened lens-like region in Figs.3,4 is bounded by biarcs \mathcal(0),\,\mathcal(\infty). It covers biarcs with p>0. Discontinuous biarc is shown by red dash-dotted line.
  7. The whole family \mathcal(p;\,\alpha,\beta,c) can be subdivided into three subfamilies of non-degenerate biarcs: \begin \mathcal^(p)\quad p\in(0;\infty);\\ \mathcal^_1(p)\quad p\in(p^\ast;0);\\ \mathcal^_2(p)\quad p\in(-\infty;p^\ast);\\ \left mathcal^(p) = \mathcal^_1(p) \cup \mathcal^_2(p)\right \end Subfamily \mathcal^_1 vanishes if p^\ast=0   (, \beta, =\pi). Subfamily \mathcal^_2 vanishes if p^\ast=-\infty (, \alpha, =\pi). In figures 3, 4, 5 biarcs \color\mathcal^ are shown in brown, biarcs \color\mathcal^_1 in blue, and biarcs \color\mathcal^_2 in green.


References

*{{cite book, last1=Nutbourne, first1=A. W., last2=Martin, first2=R. R., title=Differential geometry applied to curve and surface design. Vol.1: Foundations, publisher=Ellis Horwood, year=1988, isbn=978-0132118224


External links


Biarc Interpolation
Piecewise-circular curves Splines (mathematics)