The original notation system
The notation is based on dividing moves that can be made on a board of squares into groups of symmetry-equivalent moves, the moves within a group differing only in the direction in which the step is taken. Each such group (referred to as ''atom'') is indicated by a capital, such as N for the 8 moves of theModifiers
By default the notation assumes that an atom can move in any direction (four for purely orthogonal or diagonal moves, eight for other, ''oblique'' moves), and can both move to an empty square, or to one occupied by an opponent piece (capturing it). As most conceived chess pieces behave this way, the notation is usually very compact. When these conditions are not met, the atom is prefixed by lower-case ''modifiers''. There are directional modifiers, composed from the letters f, b, l, r, v, s and h (forward, backward, left, right, vertical, sideway and half). Single directions sometimes need to be indicated by pairs of letters (e.g. fl for forward-left), when single letters would indicate a pair of moves. As soon as any directional modifiers are used, all directions in which the piece moves must be mentioned, but combination directions such as v (= f + b) and s (= l + r) can reduce the required number of modifiers. In the case of pieces that moveThe XBetza extension
XBoard uses an extended form of Betza notation to handle bent moves, as well as ''locust'' moves, which capture pieces on a square they do not end on (such as checkers, or en-passant capture). Such moves are described as multi-step moves with the aid of a new modifier a, indicating the piece can move ''again'' after having already made a move belonging to the atom. The usual system of modifiers can then be used to specify the properties of the initial and following step independently: what is written before the a applies to the first step, what is written after it to the second. So camK would describe a piece that captures as a king, and then again moves as king to an empty square (a sort of bent checker). By having multiple a modifiers a move can be broken into many steps, specifying an exact path across the board, and what conditions each of the squares along the path must satisfy in terms of occupation for the over-all move to be allowed. There is a slight re-interpretation of the standard modifiers in this context, however: directional modifiers in a continuation step are always interpreted relative to the preceding step, where f is associated with continuation in the same direction. The modifiers p and g applied to a non-final step indicate that this step must ''end on'' an occupied square (rather than hopping over something, en route to its destination), which it will then leave undisturbed in the subsequent leg of the move. This makes the hopper modifiers more similar to m or c, specifying what happens on the target square of the move leg they apply to. The difference between p and g is that the latter turns a slider into a leaper after the step, so that it would be forced to end its move immediately behind the piece it hopped over. By making this ''range toggling'' prescribed by g work both ways (i.e. also upgrading an initial leaper move into slider), as well as by also providing the possibility to toggle between orthogonal and diagonal moves by specifying intermediate directions (which the originally written atom would not have), each leg of the move can have independently chosen slider or leaper character, and 45-degree turns are possible even on four-directional movers. A new modifier y was added to provide the range-toggling that g effectuates on occupied squares also on empty squares. The compactness of the original Betza notation can be partly preserved by choice of convenient defaults: the default modality on non-final legs is m (against mc on final legs), while the default direction set for a continuation step is all directions ''except exactly backwards''. This way aBex notation
A proposed extension by David Howe uses ''sequencing operators'' to describe multi-leg moves as sequences of legs described with the original Betza system. It distinguishes between the case where the move must continue in the same direction and where it can alter direction arbitrarily, indicated by a single hypen or a double one, respectively. A + sign can be used as alternative to concatenation, to enhance readability, while use of parentheses serves the same purpose. The range indicator gets the character of exponentiation w.r.t. the - operator (i.e. repeated continuation in the same direction), which can also be applied to a parenthesized expression that already describes a sequence of moves. The convention is introduced that a leading zero on a range specifier means exactly that number of steps, rather than maximally, and an asterisk * as exponent indicates an arbitrarily large number of steps. The hyphen has a similar function as the a modifier of XBetza, but has the advantage that also the atoms themselves can be specified differently on each leg of the move, where in XBetza this has to be specified in a rather contrived way by use of the range-toggling modifiers and unnatural direction specifiers. With the sequencing operators it is easy to specify a specific path over the board, e.g. mW-F for the Xiangqi horse, which must make a W step to a square that must be empty (i.e. it can be blocked there), followed by a diagonal outward step which can do anything. This can be used to resolve the ambiguity in nN of the original system, and re-interprets this latter notation as a ''multi-path'' piece that is allowed to make the move if at least one of the shortest possible paths (measured in K steps) is unblocked. The atom O is used for a (0,0) step, i.e. a turn pass. Bex notation also defines a method to indicate ''long-range leapers'' for which the original Betza notation did not define an atom; they can be written in coordinate notation, e.g. (1,4) for the giraffe. It also allows specification of what a piece can promote to, by suffixing the move notation with = and a comma-separated list of pieces. Bex uses y to indicate royalty. Bex notation also adds many extensions for indicating different modes of capture: where a simple c describes replacement capture as in chess, the notations a'', w'', l'' describe capture by approach, withdrawal, leaping over, etc. rM'' describes ''rifle capture'' (i.e. annihilating enemy pieces without moving), and specifies with the atom M it contains what can be captured that way. Bex notation also introduces a way to describe ''exotic effects'' as a step in a longer move. E.g. o'' as final move step indicates returning to the square of origin, [] means ''immobilize'' all pieces a K step away from the current square, while [x!iK] would similarly mobilize such neighbors. [] would denote a position swap with a piece an N leap away. None of these things can be specified in the original Betza notation, but the downside is that the notations are completely ad-hoc, and do not follow from an underlying principle.Betza 2.0
A very elaborate proposed extension of the original notation borrowed the idea of ''chaining'' simple moves into longer paths with the aid of a hyphen operator, where each of the legs can be written using the full power of the original Betza notation. (This gives it an edge over Bex, which does not use directional specifiers on continuation steps, and can only handle the forward and arbitrary-direction case, indicated in Betza 2.0 by f and a, respectively, for which Bex must use different sequencing operators - and --.) Otherwise Betza 2.0 is very similar to XBetza; they make the same re-interpretation of the modifiers for non-final and continuation steps. There is a difference in defaults, though: where XBetza assumes all directions except backward, Betza 2.0 assumes forward-only on continuation legs. Explicit specification of the atoms of each leg as in Bex and Betza 2.0 makes these notation easier to interpret. (Compare F-R or t R'' to .) On the other hand, Betza 2.0 and Bex are only easy to read when individual (multi-leg) move groups are parenthesized, because intuitively concatenation couples stronger than a hyphen (compare KNADcK-aKK-bK to KNAD(cK-aK)(K-bK)). Effects that moves have on other squares than where the piece starts or end are indicated in Betza 2.0 by specifying a path that explicitly visits all these squares, and have the description of the leg that ends there specify the effect. This way there is no need for a plethora of exotic capture modes. E.g. rook-like jump captures can be written as cR-mR, and knight-like rifle captures can be written as cN-bN, without a new notation for the return to the square of origin. The modalities are supplemented by d (''destroy''), which indicates capture of an own piece, t (''test''), which is like p, but hops over friendly pieces only, and u (''unload''), which leaves a previously captured piece on the visited square. A swap can thus be written as cdN-buN-bN. The modifier o on non-final legs is used for temporarily moving off-board, and can be used to make following steps (which better step back onto the board) dependent on the proximity of a board edge. Betza 2.0 treats range specifiers as exponentiation in the same way as Bex, e.g. (cQ-mQ)4 for the Ultima long leaper that can make up to 4 captures along a straight line if it can find empty squares between the pieces it jumps over (and then captures). A quirky feature is that it allows modifiers on the range itself, to overrule the defaults of the chaining operator that is spread around by this exponentiation. E.g. Nrf7 would mean N-rfN-rfN-..., a repeated knight step that deflects right-forward, i.e. a move of the circular slider qN. A geometric e modifier can force a continuation slider leg to be of equal length as a previous slider leg, which makes it possible to specify rifle captures by sliders as forth-and-back moving (e.g. cR-ebR). Betza 2.0 also has an ''explosion'' modifier x that would make shrapnel ejected in all directions continue the specified move to cause side effects on a specified surroundings (leaving the moving piece behind).Limiters
Normally modalities distinguish by color of the occupant of a square only. Betza 2.0 allows this to be specified in more detail by suffixing the modality with a ''limiter'', identifying the set of piece types that can be treated in the specified way (comma separated), enclosed in braces. Thus cN specifies a knight move that can only capture (enemy) knights, which can be used to build ''chameleon''-like pieces, and tN-bN-aN would have to make a back-and-forth knight jump to a friendly knight before being able to move like a knight in an independent direction (Knight-relay chess).Visualization
The following table sums up and visualizes the above-explained notation (at least for the fundamental leapers). It is a special case of the Cartesian coordinate plane, in which theReferences
{{reflist