Beta-turn
   HOME

TheInfoList



OR:

β turns (also β-bends, tight turns, reverse turns, Venkatachalam turns) are the most common form of turns—a type of non-regular secondary structure in proteins that cause a change in direction of the
polypeptide chain Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
. They are very common motifs in proteins and
polypeptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
. Each consists of four
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
residues (labelled ''i'', ''i+1'', ''i+2'' and ''i+3''). They can be defined in two ways: # By the possession of an intra-main-chain hydrogen bond between the CO of residue ''i'' and the NH of residue ''i+3''; # By having a distance of less than 7Å between the atoms of residues ''i'' and ''i+3''. The hydrogen bond criterion is the one most appropriate for everyday use, partly because it gives rise to four distinct categories; the distance criterion gives rise to the same four categories but yields additional turn types.


Definition


Hydrogen bond criterion

The hydrogen bond criterion for beta turns, applied to polypeptides whose amino acids are linked by trans peptide bonds, gives rise to just four categories, as shown by Venkatachalam in 1968. They are called types I, II, I’ and II’. All occur regularly in proteins and polypeptides but type I is most common, because it most resembles an alpha helix, occurring within 310 helices and at the ends of some classic alpha helices. Type II beta turns, on the other hand, often occur in association with beta-sheet as part of beta-links. The four types of beta turn are distinguished by the φ, ψ angles of residues ''i+1'' and ''i+2'' as shown in the table below giving the typical average values.
Glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
s are especially common as
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s with positive φ angles; for prolines such a conformation is sterically impossible but they occur frequently at amino acid positions where φ is negative. The main chain atoms of type I and I’ β turns are enantiomers (mirror images) of one another. So are the main chain atoms of type II and II’ β turns. Type I and II β turns exhibit a relationship to one another because they potentially interconvert by the process of
peptide plane flipping Peptide plane flipping is a type of conformational change that can occur in proteins by which the dihedral angles of adjacent amino acids undergo large-scale rotations with little displacement of the side chains. The plane flip is defined as a rot ...
(180° rotation of the CONH peptide plane with little positional alteration to side chains and surrounding peptides). The same relationship exists between type I’ and II’ β turns. Some evidence has indicated that these interconversions occur in beta turns in proteins such that crystal or NMR structures merely provide a snapshot of β turns that are, in reality, interchanging. In proteins in general all four beta turn types occur frequently but I is most common, followed by II, I' and II' in that order. Beta turns are especially common at the loop ends of
beta hairpins The beta hairpin (sometimes also called beta-ribbon or beta-beta unit) is a simple protein structural motif involving two beta strands that look like a hairpin. The motif consists of two strands that are adjacent in primary structure, oriented i ...
; they have a different distribution of types from the others; type I' is the most common, followed by types II', I and II. Asx turns and ST turns resemble beta turns except that residue ''i'' is replaced by the side chain of an aspartate,
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
, serine or threonine. The main chain–main chain hydrogen bond is replaced by a side chain–main chain hydrogen bond. 3D computer superimposition shows that, in proteins, they occur as one of the same four types that beta turns do, except that their relative frequency of occurrence differs: type II’ is the most common, followed by types I, II and I’.


Distance criterion

Apart from the type I, I’,II and II’ beta turns as identified via the hydrogen bond criterion, non-hydrogen-bonded beta-turns named type VIII often occur. Three other, fairly rare, types of beta turn have been identified in which the peptide bond between residues ''i+1'' and ''i+2'' is ''cis'' rather than ''trans''; these are named types VIa1, VIa2 and VIb. Another category, type IV, was used for turns not belonging to any of the above. Further details of these turns are given in turn (biochemistry).


External links

Two websites are available for finding and examining hydrogen-bonded beta turns in proteins:
Motivated Proteins

PDBeMotif


References

{{Protein secondary structure Protein structural motifs