HOME

TheInfoList



OR:

Banded iron formations (BIFs; also called banded ironstone formations) are distinctive units of
sedimentary rock Sedimentary rocks are types of rock (geology), rock formed by the cementation (geology), cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or de ...
consisting of alternating layers of
iron oxide An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. Iron ...
s and iron-poor
chert Chert () is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a prec ...
. They can be up to several hundred meters in thickness and extend laterally for several hundred kilometers. Almost all of these formations are of
Precambrian The Precambrian ( ; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of t ...
age and are thought to record the oxygenation of the Earth's oceans. Some of the Earth's oldest rock formations, which formed about ( Ma), are associated with banded iron formations. Banded iron formations are thought to have formed in sea water as the result of
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
production by
photosynthetic Photosynthesis ( ) is a Biological system, system of biological processes by which Photoautotrophism, photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical ener ...
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
. The oxygen combined with dissolved
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
in Earth's oceans to form insoluble iron oxides, which precipitated out, forming a thin layer on the ocean floor. Each band is similar to a varve, resulting from cyclic variations in oxygen production. Banded iron formations were first discovered in northern
Michigan Michigan ( ) is a peninsular U.S. state, state in the Great Lakes region, Great Lakes region of the Upper Midwest, Upper Midwestern United States. It shares water and land boundaries with Minnesota to the northwest, Wisconsin to the west, ...
in 1844. Banded iron formations account for more than 60% of global iron reserves and provide most of the
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the f ...
presently mined. Most formations can be found in
Australia Australia, officially the Commonwealth of Australia, is a country comprising mainland Australia, the mainland of the Australia (continent), Australian continent, the island of Tasmania and list of islands of Australia, numerous smaller isl ...
,
Brazil Brazil, officially the Federative Republic of Brazil, is the largest country in South America. It is the world's List of countries and dependencies by area, fifth-largest country by area and the List of countries and dependencies by population ...
,
Canada Canada is a country in North America. Its Provinces and territories of Canada, ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, making it the world's List of coun ...
,
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
,
Russia Russia, or the Russian Federation, is a country spanning Eastern Europe and North Asia. It is the list of countries and dependencies by area, largest country in the world, and extends across Time in Russia, eleven time zones, sharing Borders ...
,
South Africa South Africa, officially the Republic of South Africa (RSA), is the Southern Africa, southernmost country in Africa. Its Provinces of South Africa, nine provinces are bounded to the south by of coastline that stretches along the Atlantic O ...
,
Ukraine Ukraine is a country in Eastern Europe. It is the List of European countries by area, second-largest country in Europe after Russia, which Russia–Ukraine border, borders it to the east and northeast. Ukraine also borders Belarus to the nor ...
, and the
United States The United States of America (USA), also known as the United States (U.S.) or America, is a country primarily located in North America. It is a federal republic of 50 U.S. state, states and a federal capital district, Washington, D.C. The 48 ...
.


Description

A typical banded iron formation consists of repeated, thin layers (a few millimeters to a few centimeters in thickness) of silver to black
iron oxide An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. Iron ...
s, either
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
(Fe3O4) or
hematite Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
(Fe2O3), alternating with bands of iron-poor
chert Chert () is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a prec ...
, often red in color, of similar thickness. A single banded iron formation can be up to several hundred meters in thickness and extend laterally for several hundred kilometers. Banded iron formation is more precisely defined as chemically precipitated
sedimentary rock Sedimentary rocks are types of rock (geology), rock formed by the cementation (geology), cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or de ...
containing greater than 15%
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
. However, most BIFs have a higher content of iron, typically around 30% by mass, so that roughly half the rock is iron oxides and the other half is silica. The iron in BIFs is divided roughly equally between the more oxidized
ferric In chemistry, iron(III) or ''ferric'' refers to the chemical element, element iron in its +3 oxidation number, oxidation state. ''Ferric chloride'' is an alternative name for iron(III) chloride (). The adjective ''ferrous'' is used instead for i ...
form, Fe(III), and the more reduced
ferrous In chemistry, iron(II) refers to the chemical element, element iron in its +2 oxidation number, oxidation state. The adjective ''ferrous'' or the prefix ''ferro-'' is often used to specify such compounds, as in ''ferrous chloride'' for iron(II ...
form, Fe(II), so that the ratio Fe(III)/Fe(II+III) typically varies from 0.3 to 0.6. This indicates a predominance of magnetite, in which the ratio is 0.67, over hematite, for which the ratio is 1. In addition to the iron oxides (hematite and magnetite), the iron sediment may contain the iron-rich carbonates siderite and ankerite, or the iron-rich silicates
minnesotaite Minnesotaite is an iron silicate mineral with formula: (Fe2+,Mg)3Si4O10(OH)2. It crystallizes in the triclinic crystal system and occurs as fine needles and platelets with other silicates. It is isostructural with the pyrophyllite-talc mineral g ...
and greenalite. Most BIFs are chemically simple, containing little but iron oxides, silica, and minor carbonate, though some contain significant calcium and magnesium, up to 9% and 6.7% as oxides respectively. When used in the singular, the term banded iron formation refers to the sedimentary lithology just described. The plural form, banded iron formations, is used informally to refer to stratigraphic units that consist primarily of banded iron formation.Examples of this usage are found in Gole and Klein 1981; Klein 2005; Trendall 2005; and Zhu ''et al.'' 2014. A well-preserved banded iron formation typically consists of ''macrobands'' several meters thick that are separated by thin
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
beds. The macrobands in turn are composed of characteristic alternating layers of chert and iron oxides, called ''mesobands'', that are several millimeters to a few centimeters thick. Many of the chert mesobands contain ''microbands'' of iron oxides that are less than a millimeter thick, while the iron mesobands are relatively featureless. BIFs tend to be extremely hard, tough, and dense, making them highly resistant to erosion, and they show fine details of stratification over great distances, suggesting they were deposited in a very low-energy environment; that is, in relatively deep water, undisturbed by wave motion or currents. BIFs only rarely interfinger with other rock types, tending to form sharply bounded discrete units that never grade laterally into other rock types. Banded iron formations of the Great Lakes region and the Frere Formation of western
Australia Australia, officially the Commonwealth of Australia, is a country comprising mainland Australia, the mainland of the Australia (continent), Australian continent, the island of Tasmania and list of islands of Australia, numerous smaller isl ...
are somewhat different in character and are sometimes described as ''granular iron formations'' or ''GIFs''. Their iron sediments are granular to oolitic in character, forming discrete grains about a millimeter in diameter, and they lack microbanding in their chert mesobands. They also show more irregular mesobanding, with indications of ripples and other sedimentary structures, and their mesobands cannot be traced out any great distance. Though they form well-defined, discrete units, these are commonly interbedded with coarse to medium-grained epiclastic sediments (sediments formed by weathering of rock). These features suggest a higher energy depositional environment, in shallower water disturbed by wave motions. However, they otherwise resemble other banded iron formations. The great majority of banded iron formations are
Archean The Archean ( , also spelled Archaean or Archæan), in older sources sometimes called the Archaeozoic, is the second of the four geologic eons of Earth's history of Earth, history, preceded by the Hadean Eon and followed by the Proterozoic and t ...
or
Paleoproterozoic The Paleoproterozoic Era (also spelled Palaeoproterozoic) is the first of the three sub-divisions ( eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from (2.5–1.6  Ga). It is further sub ...
in age. However, a small number of BIFs are
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
in age, and are frequently, if not universally, associated with glacial deposits, often containing glacial dropstones. They also tend to show a higher level of oxidation, with hematite prevailing over magnetite, and they typically contain a small amount of phosphate, about 1% by mass. Mesobanding is often poor to nonexistent and soft-sediment deformation structures are common. This suggests very rapid deposition. However, like the granular iron formations of the Great Lakes, the Neoproterozoic occurrences are widely described as banded iron formations. Banded iron formations are distinct from most
Phanerozoic The Phanerozoic is the current and the latest of the four eon (geology), geologic eons in the Earth's geologic time scale, covering the time period from 538.8 million years ago to the present. It is the eon during which abundant animal and ...
ironstones. Ironstones are relatively rare and are thought to have been deposited in marine
anoxic event An anoxic event describes a period wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic ( anoxic and sulfidic) waters. Although anoxic events have not happened for millions of years, the geol ...
s, in which the depositional basin became depleted in free
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. They are composed of iron silicates and oxides without appreciable chert but with significant
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
content, which is lacking in BIFs. No classification scheme for banded iron formations has gained complete acceptance. In 1954, Harold Lloyd James advocated a classification based on four lithological facies (oxide, carbonate, silicate, and sulfide) assumed to represent different depths of deposition, but this speculative model did not hold up. In 1980, Gordon A. Gross advocated a twofold division of BIFs into an Algoma type and a Lake Superior type, based on the character of the depositional basin. Algoma BIFs are found in relatively small basins in association with
greywacke Greywacke or graywacke ( ) is a variety of sandstone generally characterized by its hardness (6–7 on Mohs scale), dark color, and Sorting (sediment), poorly sorted angular grains of quartz, feldspar, and small rock fragments or sand-size Lith ...
s and other volcanic rocks and are assumed to be associated with volcanic centers. Lake Superior BIFs are found in larger basins in association with black shales, quartzites, and dolomites, with relatively minor tuffs or other volcanic rocks, and are assumed to have formed on a continental shelf. This classification has been more widely accepted, but the failure to appreciate that it is strictly based on the characteristics of the depositional basin and not the lithology of the BIF itself has led to confusion, and some geologists have advocated for its abandonment. However, the classification into Algoma versus Lake Superior types continues to be used.


Occurrence

Banded iron formations are almost exclusively
Precambrian The Precambrian ( ; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of t ...
in age, with most deposits dating to the late Archean (2800–2500 Ma) with a secondary peak of deposition in the Orosirian period of the
Paleoproterozoic The Paleoproterozoic Era (also spelled Palaeoproterozoic) is the first of the three sub-divisions ( eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from (2.5–1.6  Ga). It is further sub ...
(1850 Ma). Minor amounts were deposited in the early Archean and in the
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
(750 Ma). The youngest known banded iron formation is an Early Cambrian formation in western China. Because the processes by which BIFs are formed appear to be restricted to early geologic time, and may reflect unique conditions of the Precambrian world, they have been intensively studied by geologists. Banded iron formations are found worldwide, in every continental shield of every continent. The oldest BIFs are associated with greenstone belts and include the BIFs of the Isua Greenstone Belt, the oldest known, which have an estimated age of 3700 to 3800 Ma. The Temagami banded iron deposits formed over a 50-million-year period, from 2736 to 2687 Ma, and reached a thickness of . Other examples of early Archean BIFs are found in the Abitibi greenstone belts, the greenstone belts of the Yilgarn and Pilbara cratons, the
Baltic shield The Baltic Shield (or Fennoscandian Shield) is a segment of the Earth's crust belonging to the East European craton, East European Craton, representing a large part of Fennoscandia, northwestern Russia and the northern Baltic Sea. It is composed ...
, and the cratons of the
Amazon Amazon most often refers to: * Amazon River, in South America * Amazon rainforest, a rainforest covering most of the Amazon basin * Amazon (company), an American multinational technology company * Amazons, a tribe of female warriors in Greek myth ...
,
north China North China () is a list of regions of China, geographical region of the People's Republic of China, consisting of five province-level divisions of China, provincial-level administrative divisions, namely the direct-administered municipalities ...
, and
south South is one of the cardinal directions or compass points. The direction is the opposite of north and is perpendicular to both west and east. Etymology The word ''south'' comes from Old English ''sūþ'', from earlier Proto-Germanic ''*sunþa ...
and west Africa. The most extensive banded iron formations belong to what A.F. Trendall calls the Great
Gondwana Gondwana ( ; ) was a large landmass, sometimes referred to as a supercontinent. The remnants of Gondwana make up around two-thirds of today's continental area, including South America, Africa, Antarctica, Australia (continent), Australia, Zea ...
BIFs. These are late Archean in age and are not associated with greenstone belts. They are relatively undeformed and form extensive topographic plateaus, such as the
Hamersley Range The Hamersley Range is a mountainous region of the Pilbara region of Western Australia. The range was named on 12 June 1861 by explorer Francis Thomas Gregory after Edward Hamersley, a prominent promoter of his exploration expedition to the ...
.MacLeod, W. N. (1966
The geology and iron deposits of the Hamersley Range area. Bulletin
(Geological Survey of Western Australia), No. 117
The banded iron formations here were deposited from 2470 to 2450 Ma and are the thickest and most extensive in the world, with a maximum thickness in excess of . Similar BIFs are found in the Carajás Formation of the Amazon craton, the Cauê Itabirite of the São Francisco craton, the Kuruman Iron Formation and Penge Iron Formation of South Africa, and the Mulaingiri Formation of
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
. Paleoproterozoic banded iron formations are found in the Iron Range and other parts of the
Canadian Shield The Canadian Shield ( ), also called the Laurentian Shield or the Laurentian Plateau, is a geologic shield, a large area of exposed Precambrian igneous and high-grade metamorphic rocks. It forms the North American Craton (or Laurentia), th ...
. The Iron Range is a group of four major deposits: the
Mesabi Range The Mesabi Iron Range is a mining district and mountain range in northeastern Minnesota following an elongate trend containing large deposits of iron ore. It is the largest of four major iron ranges in the region collectively known as the Iro ...
, the Vermilion Range, the Gunflint Range, and the Cuyuna Range. All are part of the Animikie Group and were deposited between 2500 and 1800 Ma. These BIFs are predominantly granular iron formations. Neoproterozoic banded iron formations include the Urucum in Brazil, Rapitan in the
Yukon Yukon () is a Provinces and territories of Canada, territory of Canada, bordering British Columbia to the south, the Northwest Territories to the east, the Beaufort Sea to the north, and the U.S. state of Alaska to the west. It is Canada’s we ...
, and the Damara Belt in southern Africa. They are relatively limited in size, with horizontal extents not more than a few tens of kilometers and thicknesses not more than about . These are widely thought to have been deposited under unusual anoxic oceanic conditions associated with the "
Snowball Earth The Snowball Earth is a historical geology, geohistorical hypothesis that proposes that during one or more of Earth's greenhouse and icehouse Earth, icehouse climates, the planet's planetary surface, surface became nearly entirely freezing, fr ...
."


Origins

Banded iron formation provided some of the first evidence for the timing of the
Great Oxidation Event The Great Oxidation Event (GOE) or Great Oxygenation Event, also called the Oxygen Catastrophe, Oxygen Revolution, Oxygen Crisis or Oxygen Holocaust, was a time interval during the Earth's Paleoproterozoic era when the Earth's atmosphere an ...
, 2,400 Ma. With his 1968 paper on the early atmosphere and oceans of the Earth, Preston Cloud established the general framework that has been widely, if not universally, accepted for understanding the deposition of BIFs. Cloud postulated that banded iron formations were a consequence of anoxic, iron-rich waters from the deep ocean welling up into a
photic zone The photic zone (or euphotic zone, epipelagic zone, or sunlight zone) is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological ...
inhabited by cyanobacteria that had evolved the capacity to carry out oxygen-producing photosynthesis, but which had not yet evolved enzymes (such as superoxide dismutase) for living in an oxygenated environment. Such organisms would have been protected from their own oxygen waste through its rapid removal via the reservoir of reduced ferrous iron, Fe(II), in the early ocean. The oxygen released by photosynthesis oxidized the Fe(II) to ferric iron, Fe(III), which precipitated out of the sea water as insoluble iron oxides that settled to the ocean floor. Cloud suggested that banding resulted from fluctuations in the population of cyanobacteria due to free radical damage by oxygen. This also explained the relatively limited extent of early Archean deposits. The great peak in BIF deposition at the end of the Archean was thought to be the result of the evolution of mechanisms for living with oxygen. This ended self-poisoning and produced a population explosion in the cyanobacteria that rapidly depleted the remaining supply of reduced iron and ended most BIF deposition. Oxygen then began to accumulate in the atmosphere. Some details of Cloud's original model were abandoned. For example, improved dating of Precambrian strata has shown that the late Archean peak of BIF deposition was spread out over tens of millions of years, rather than taking place in a very short interval of time following the evolution of oxygen-coping mechanisms. However, his general concepts continue to shape thinking about the origins of banded iron formations. In particular, the concept of the upwelling of deep ocean water, rich in reduced iron, into an oxygenated surface layer poor in iron remains a key element of most theories of deposition. The few formations deposited after 1,800  Ma may point to intermittent low levels of free atmospheric oxygen, while the small peak at may be associated with the hypothetical Snowball Earth.


Formation processes

The microbands within chert layers are most likely varves produced by annual variations in oxygen production. Diurnal microbanding would require a very high rate of deposition of 2 meters per year or 5 km/Ma. Estimates of deposition rate based on various models of deposition and sensitive high-resolution ion microprobe (SHRIMP) estimates of the age of associated tuff beds suggest a deposition rate in typical BIFs of 19 to 270 m/Ma, which are consistent either with annual varves or
rhythmite A rhythmite consists of layers of sediment or sedimentary rock which are laid down with an obvious periodicity and regularity. They may be created by annual processes such as seasonally varying deposits reflecting variations in the runoff cycle, b ...
s produced by tidal cycles. Preston Cloud proposed that mesobanding was a result of self-poisoning by early cyanobacteria as the supply of reduced iron was periodically depleted. Mesobanding has also been interpreted as a secondary structure, not present in the sediments as originally laid down, but produced during compaction of the sediments. Another theory is that mesobands are primary structures resulting from pulses of activity along
mid-ocean ridge A mid-ocean ridge (MOR) is a undersea mountain range, seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading ...
s that change the availability of reduced iron on time scales of decades. In the case of granular iron formations, the mesobands are attributed to winnowing of sediments in shallow water, in which wave action tended to segregate particles of different size and composition. For banded iron formations to be deposited, several preconditions must be met. # The deposition basin must contain waters that are ferruginous (rich in
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
). # This implies they are also anoxic, since ferrous iron oxidizes to ferric iron within hours or days in the presence of dissolved oxygen. This would prevent transport of large quantities of iron from its sources to the deposition basin. # The waters must not be euxinic (rich in
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
), since this would cause the ferrous iron to precipitate out as pyrite. # There must be an oxidation mechanism active within the depositional basin that steadily converts the reservoir of ferrous iron to ferric iron.


Source of reduced iron

There must be an ample source of reduced iron that can circulate freely into the deposition basin. Plausible sources of iron include hydrothermal vents along mid-ocean ridges, windblown dust, rivers, glacial ice, and seepage from continental margins. The importance of various sources of reduced iron has likely changed dramatically across geologic time. This is reflected in the division of BIFs into Algoma and Lake Superior-type deposits. Algoma-type BIFs formed primarily in the Archean. These older BIFs tend to show a positive europium anomaly consistent with a hydrothermal source of iron. By contrast, Lake Superior-type banded iron formations primarily formed during the
Paleoproterozoic The Paleoproterozoic Era (also spelled Palaeoproterozoic) is the first of the three sub-divisions ( eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from (2.5–1.6  Ga). It is further sub ...
era, and lack the europium anomalies of the older Algoma-type BIFs, suggesting a much greater input of iron weathered from continents.


Absence of oxygen or hydrogen sulfide

The absence of hydrogen sulfide in anoxic ocean water can be explained either by reduced sulfur flux into the deep ocean or a lack of dissimilatory sulfate reduction (DSR), the process by which microorganisms use sulfate in place of oxygen for respiration. The product of DSR is hydrogen sulfide, which readily precipitates iron out of solution as pyrite. The requirement of an anoxic, but not euxinic, deep ocean for deposition of banded iron formation suggests two models to explain the end of BIF deposition 1.8 billion years ago. The "Holland ocean" model proposes that the deep ocean became sufficiently oxygenated at that time to end transport of reduced iron. Heinrich Holland argues that the absence of
manganese Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
deposits during the pause between Paleoproterozoic and Neoproterozoic BIFs is evidence that the deep ocean had become at least slightly oxygenated. The " Canfield ocean" model proposes that, to the contrary, the deep ocean became euxinic and transport of reduced iron was blocked by precipitation as pyrite. Banded iron formations in northern
Minnesota Minnesota ( ) is a U.S. state, state in the Upper Midwestern region of the United States. It is bordered by the Canadian provinces of Manitoba and Ontario to the north and east and by the U.S. states of Wisconsin to the east, Iowa to the so ...
are overlain by a thick layer of ejecta from the
Sudbury Basin The Sudbury Basin (), also known as Sudbury Structure or the Sudbury Nickel Irruptive, is a major geology, geological structure in Ontario, Canada. It is among the oldest- and largest-known List of impact structures on Earth, impact structures ...
impact. An
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
(estimated at across) impacted into waters about deep 1.849 billion years ago, coincident with the pause in BIF deposition. Computer models suggest that the impact would have generated a
tsunami A tsunami ( ; from , ) is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Earthquakes, volcanic eruptions and underwater explosions (including detonations, ...
at least high at the point of impact, and high about away. It has been suggested that the immense waves and large underwater landslides triggered by the impact caused the mixing of a previously stratified ocean, oxygenated the deep ocean, and ended BIF deposition shortly after the impact.


Oxidation

Although Cloud argued that microbial activity was a key process in the deposition of banded iron formation, the role of oxygenic versus anoxygenic photosynthesis continues to be debated, and nonbiogenic processes have also been proposed.


=Oxygenic photosynthesis

= Cloud's original hypothesis was that ferrous iron was oxidized in a straightforward manner by molecular oxygen present in the water: : The oxygen comes from the photosynthetic activities of cyanobacteria. Oxidation of ferrous iron may have been hastened by aerobic iron-oxidizing bacteria, which can increase rates of oxidation by a factor of 50 under conditions of low oxygen.


=Anoxygenic photosynthesis

= Oxygenic photosynthesis is not the only biogenic mechanism for deposition of banded iron formations. Some geochemists have suggested that banded iron formations could form by direct oxidation of iron by microbial anoxygenic phototrophs. The concentrations of phosphorus and trace metals in BIFs are consistent with precipitation through the activities of iron-oxidizing bacteria. Iron isotope ratios in the oldest banded iron formations (3700-3800 Ma), at Isua, Greenland, are best explained by assuming extremely low oxygen levels (<0.001% of modern O2 levels in the photic zone) and anoxygenic photosynthetic oxidation of Fe(II): : This requires that dissimilatory iron reduction, the biological process in which microorganisms substitute Fe(III) for oxygen in respiration, was not yet widespread. By contrast, Lake Superior-type banded iron formations show iron isotope ratios that suggest that dissimilatory iron reduction expanded greatly during this period. An alternate route is oxidation by anaerobic denitrifying bacteria. This requires that
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
by microorganisms is also active. :


=Abiogenic mechanisms

= The lack of organic carbon in banded iron formation argues against microbial control of BIF deposition. On the other hand, there is
fossil A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserve ...
evidence for abundant photosynthesizing cyanobacteria at the start of BIF deposition and of hydrocarbon markers in shales within banded iron formation of the Pilbara craton. The carbon that is present in banded iron formations is enriched in the light isotope, 12C, an indicator of a biological origin. If a substantial part of the original iron oxides was in the form of hematite, then any carbon in the sediments might have been oxidized by the decarbonization reaction: : Trendall and J.G. Blockley proposed, but later rejected, the hypothesis that banded iron formation might be a peculiar kind of Precambrian
evaporite An evaporite () is a water- soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as oce ...
. Other proposed abiogenic processes include radiolysis by the radioactive isotope of
potassium Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to ...
, 40K, or annual turnover of basin water combined with upwelling of iron-rich water in a stratified ocean. Another abiogenic mechanism is photooxidation of iron by sunlight. Laboratory experiments suggest that this could produce a sufficiently high deposition rate under likely conditions of pH and sunlight. However, if the iron came from a shallow hydrothermal source, other laboratory experiments suggest that precipitation of ferrous iron as carbonates or silicates could seriously compete with photooxidation.


Diagenesis

Regardless of the precise mechanism of oxidation, the oxidation of ferrous to ferric iron likely caused the iron to precipitate out as a ferric hydroxide gel. Similarly, the silica component of the banded iron formations likely precipitated as a hydrous silica gel. The conversion of iron hydroxide and silica gels to banded iron formation is an example of diagenesis, the conversion of sediments into solid rock. There is evidence that banded iron formations formed from sediments with nearly the same chemical composition as is found in the BIFs today. The BIFs of the Hamersley Range show great chemical homogeneity and lateral uniformity, with no indication of any precursor rock that might have been altered to the current composition. This suggests that, other than dehydration and decarbonization of the original ferric hydroxide and silica gels, diagenesis likely left the composition unaltered and consisted of crystallization of the original gels. Decarbonization may account for the lack of carbon and preponderance of magnetite in older banded iron formations. The relatively high content of hematite in Neoproterozoic BIFs suggests they were deposited very quickly and via a process that did not produce great quantities of biomass, so that little carbon was present to reduce hematite to magnetite. However, it is possible that BIF was altered from carbonate rock or from hydrothermal mud during late stages of diagenesis. A 2018 study found no evidence that magnetite in BIF formed by decarbonization, and suggests that it formed from thermal decomposition of siderite via the reaction :: The iron may have originally precipitated as greenalite and other iron silicates. Macrobanding is then interpreted as a product of compaction of the original iron silicate mud. This produced siderite-rich bands that served as pathways for fluid flow and formation of magnetite.


The Great Oxidation Event

The peak of deposition of banded iron formations in the late Archean, and the end of deposition in the Orosirian, have been interpreted as markers for the Great Oxygenation Event. Prior to 2.45 billion years ago, the high degree of mass-independent fractionation of sulfur (MIF-S) indicates an extremely oxygen-poor atmosphere. The peak of banded iron formation deposition coincides with the disappearance of the MIF-S signal, which is interpreted as the permanent appearance of oxygen in the atmosphere between 2.41 and 2.35 billion years ago. This was accompanied by the development of a stratified ocean with a deep anoxic layer and a shallow oxidized layer. The end of deposition of BIF at 1.85 billion years ago is attributed to the oxidation of the deep ocean.


Snowball Earth hypothesis

Until 1992 it was assumed that the rare, later (younger) banded iron deposits represented unusual conditions where oxygen was depleted locally. Iron-rich waters would then form in isolation and subsequently come into contact with oxygenated water. The Snowball Earth hypothesis provided an alternative explanation for these younger deposits. In a Snowball Earth state the continents, and possibly seas at low latitudes, were subject to a severe ice age circa 750 to 580 Ma that nearly or totally depleted free oxygen. Dissolved iron then accumulated in the oxygen-poor oceans (possibly from seafloor hydrothermal vents). Following the thawing of the Earth, the seas became oxygenated once more causing the precipitation of the iron. Banded iron formations of this period are predominantly associated with the Sturtian glaciation. An alternative mechanism for banded iron formations in the Snowball Earth era suggests the iron was deposited from metal-rich brines in the vicinity of hydrothermally active
rift zone A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks (or rifts) develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. Believed ...
s due to glacially-driven thermal overturn. The limited extent of these BIFs compared with the associated glacial deposits, their association with volcanic formations, and variation in thickness and facies favor this hypothesis. Such a mode of formation does not require a global anoxic ocean, but is consistent with either a Snowball Earth or Slushball Earth model.


Economic geology

Banded iron formations provide most of the
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the f ...
presently mined. More than 60% of global iron reserves are in the form of banded iron formation, most of which can be found in Australia, Brazil, Canada, India, Russia, South Africa, Ukraine, and the United States. Different mining districts coined their own names for BIFs. The term "banded iron formation" was coined in the iron districts of Lake Superior, where the ore deposits of the Mesabi, Marquette, Cuyuna, Gogebic, and
Menominee The Menominee ( ; meaning ''"Menominee People"'', also spelled Menomini, derived from the Ojibwe language word for "Wild Rice People"; known as ''Mamaceqtaw'', "the people", in the Menominee language) are a federally recognized tribe of Na ...
iron ranges were also variously known as "jasper", "jaspilite", "iron-bearing formation", or taconite. Banded iron formations were described as "itabarite" in Brazil, as "ironstone" in South Africa, and as "BHQ" (banded hematite quartzite) in India. Banded iron formation was first discovered in northern
Michigan Michigan ( ) is a peninsular U.S. state, state in the Great Lakes region, Great Lakes region of the Upper Midwest, Upper Midwestern United States. It shares water and land boundaries with Minnesota to the northwest, Wisconsin to the west, ...
in 1844, and mining of these deposits prompted the earliest studies of BIFs, such as those of Charles R. Van Hise and Charles Kenneth Leith. Iron mining operations on the Mesabi and Cuyuna Ranges evolved into enormous open pit mines, where
steam shovel A steam shovel is a large steam engine, steam-powered excavating machine designed for lifting and moving material such as Rock (geology), rock and soil. It is the earliest type of power shovel or excavator. Steam shovels played a major role in ...
s and other industrial machines could remove massive amounts of ore. Initially the mines exploited large beds of hematite and
goethite Goethite (, ) is a mineral of the diaspore group, consisting of iron(III) oxide-hydroxide, specifically the α- polymorph. It is found in soil and other low-temperature environments such as sediment. Goethite has been well known since ancient t ...
weathered out of the banded iron formations, and some of this "natural ore" had been extracted by 1980. By 1956, large-scale commercial production from the BIF itself began at the Peter Mitchell Mine near Babbitt, Minnesota. Production in Minnesota was of ore concentrate per year in 2016, which is about 75% of total U.S. production. Magnetite-rich banded iron formation, known locally as taconite, is ground to a powder, and the magnetite is separated with powerful magnets and pelletized for shipment and smelting. Iron ore became a global commodity after the
Second World War World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
, and with the end of the embargo against exporting iron ore from Australia in 1960, the Hamersley Range became a major mining district. The banded iron formations here are the thickest and most extensive in the world, originally covering an area of and containing about of iron. The range contains 80 percent of all identified iron ore reserves in Australia. Over of iron ore is removed from the range every year. The Itabarite banded iron formations of Brazil cover at least and are up to thick. These form the Quadrilatero Ferrifero or Iron Quadrangle, which resembles the Iron Range mines of United States in that the favored ore is hematite weathered out of the BIFs. Production from the Iron Quadrangle helps make Brazil the second largest producer of iron ore after Australia, with monthly exports averaging from December 2007 to May 2018. Mining of ore from banded iron formations at Anshan in north China began in 1918. When Japan occupied Northeast China in 1931, these mills were turned into a Japanese-owned monopoly, and the city became a significant strategic industrial hub during the Second World War. Total production of processed iron in
Manchuria Manchuria is a historical region in northeast Asia encompassing the entirety of present-day northeast China and parts of the modern-day Russian Far East south of the Uda (Khabarovsk Krai), Uda River and the Tukuringra-Dzhagdy Ranges. The exact ...
reached in 1931–1932. By 1942, Anshan's Shōwa Steel Works total production capacity reached per annum, making it one of the major iron and steel centers in the world. Production was severely disrupted during the Soviet occupation of Manchuria in 1945 and the subsequent
Chinese Civil War The Chinese Civil War was fought between the Kuomintang-led Nationalist government, government of the Republic of China (1912–1949), Republic of China and the forces of the Chinese Communist Party (CCP). Armed conflict continued intermitt ...
. However, from 1948 to 2001, the steel works produced 290 million tons of steel, of
pig iron Pig iron, also known as crude iron, is an intermediate good used by the iron industry in the production of steel. It is developed by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with si ...
and of rolled steel. Annual production capacity is of pig iron, of steel and of rolled steel. A quarter of China's total iron ore reserves, about , are located in Anshan.


See also

* *


References


Further reading

* *


External links

* * * {{DEFAULTSORT:Banded Iron Formation Precambrian Iron ores Chert Economic geology Sedimentary rocks