Background Independent
   HOME

TheInfoList



OR:

Background independence is a condition in
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
that requires the defining equations of a theory to be independent of the actual shape of the
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
and the value of various
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s within the spacetime. In particular this means that it must be possible not to refer to a specific
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
—the theory must be
coordinate-free A coordinate-free, or component-free, treatment of a scientific theory or mathematical topic develops its concepts on any form of manifold without reference to any particular coordinate system. Benefits Coordinate-free treatments generally all ...
. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations.


Description

Background independence is a loosely defined property of a theory of physics. Roughly speaking, it limits the number of mathematical structures used to describe space and time that are put in place "by hand". Instead, these structures are the result of dynamical equations, such as
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
, so that one can determine from first principles what form they should take. Since the form of the metric determines the result of calculations, a theory with background independence is more predictive than a theory without it, since the theory requires fewer inputs to make its predictions. This is analogous to desiring fewer free parameters in a fundamental theory. So background independence can be seen as extending the mathematical objects that should be predicted from theory to include not just the parameters, but also geometrical structures. Summarizing this, Rickles writes: "Background structures are contrasted with dynamical ones, and a background independent theory only possesses the latter type—obviously, background dependent theories are those possessing the former type in addition to the latter type." In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, background independence is identified with the property that the metric of spacetime is the solution of a dynamical equation. In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, this is not the case, the metric is fixed by the physicist to match experimental observations. This is undesirable, since the form of the metric impacts the physical predictions, but is not itself predicted by the theory.


Manifest background independence

Manifest background independence is primarily an aesthetic rather than a physical requirement. It is analogous and closely related to requiring in
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
that equations be written in a form that is independent of the choice of charts and coordinate embeddings. If a background-independent formalism is present, it can lead to simpler and more elegant equations. However, there is no physical content in requiring that a theory be manifestly background-independent – for example, the equations of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
can be rewritten in local coordinates without affecting the physical implications. Although making a property manifest is only aesthetic, it is a useful tool for making sure the theory actually has that property. For example, if a theory is written in a manifestly Lorentz-invariant way, one can check at every step to be sure that Lorentz invariance is preserved. Making a property manifest also makes it clear whether or not the theory actually has that property. The inability to make classical mechanics manifestly Lorentz-invariant does not reflect a lack of imagination on the part of the theorist, but rather a physical feature of the theory. The same goes for making classical mechanics or
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
background-independent.


Theories of quantum gravity

Because of the speculative nature of quantum-gravity research, there is much debate as to the correct implementation of background independence. Ultimately, the answer is to be decided by experiment, but until experiments can probe quantum-gravity phenomena, physicists have to settle for debate. Below is a brief summary of the two largest quantum-gravity approaches. Physicists have studied models of 3D quantum gravity, which is a much simpler problem than 4D quantum gravity (this is because in 3D, quantum gravity has no local degrees of freedom). In these models, there are non-zero transition amplitudes between two different topologies, or in other words, the topology changes. This and other similar results lead physicists to believe that any consistent quantum theory of gravity should include topology change as a dynamical process.


String theory

String theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
is usually formulated with
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
around a fixed background. While it is possible that the theory defined this way is locally background-invariant, if so, it is not manifest, and it is not clear what the exact meaning is. One attempt to formulate string theory in a manifestly background-independent fashion is
string field theory String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * Strings (1991 film), ''Strings'' (1991 fi ...
, but little progress has been made in understanding it. Another approach is the conjectured, but yet unproven
AdS/CFT duality In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter s ...
, which is believed to provide a full, non-perturbative definition of string theory in spacetimes with anti-de Sitter asymptotics. If so, this could describe a kind of
superselection sector In quantum mechanics, superselection extends the concept of selection rules. Superselection rules are postulated rules forbidding the preparation of quantum states that exhibit coherence between eigenstates of certain observables. It was originall ...
of the putative background-independent theory. But it would be still restricted to anti-de Sitter space asymptotics, which disagrees with the current observations of our Universe. A full non-perturbative definition of the theory in arbitrary spacetime backgrounds is still lacking. Topology change is an established process in
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
.


Loop quantum gravity

A very different approach to quantum gravity called
loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
is fully non-perturbative and manifestly background-independent: geometric quantities, such as area, are predicted without reference to a background metric or asymptotics (e.g. no need for a background metric or an anti-de Sitter asymptotics), only a given
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
.


See also

*
General relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
*
String theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
*
Causal dynamical triangulation Causal dynamical triangulation (abbreviated as CDT) theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent. This means that it does not ass ...
*
Loop quantum gravity Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attem ...
*
Quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
*
Coordinate-free A coordinate-free, or component-free, treatment of a scientific theory or mathematical topic develops its concepts on any form of manifold without reference to any particular coordinate system. Benefits Coordinate-free treatments generally all ...


References


Further reading

* * * * * * * {{cite book , last1=Zahar , first1=E. , year=1989 , title=Einstein's Revolution: A Study in Heuristic , publisher=
Open Court Publishing Company The Open Court Publishing Company is a publisher with offices in Chicago and LaSalle, Illinois. It is part of the Carus Publishing Company of Peru, Illinois. History Open Court was founded in 1887 by Edward C. Hegeler of the Matthiessen-Hegel ...
, isbn=0-8126-9066-4 Theoretical physics Philosophy of physics