HOME

TheInfoList



OR:

In
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
, SWI/SNF (SWItch/Sucrose Non-Fermentable), is a subfamily of
ATP-dependent chromatin remodeling Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory Transcription (genetics), transcription machinery proteins, and thereby control gene expression. Such remodeling i ...
complexes, which is found in
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
. In other words, it is a group of
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes (, /, , , ), as well as other
polypeptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
. It possesses a DNA-stimulated
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
activity that can destabilize
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wr ...
-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, allowing genes to be activated or repressed. The human analogs of SWI/SNF are "
BRG1 Transcription activator BRG1 also known as ATP-dependent chromatin remodeler SMARCA4 is a protein that in humans is encoded by the ''SMARCA4'' gene. Function The protein encoded by this gene is a member of the SWI/SNF family of proteins and i ...
- or
BRM British Racing Motors (BRM) was a British Formula One motor racing team. Founded in 1945 and based in the market town of Bourne in Lincolnshire, it participated from 1951 to 1977, competing in 197 grands prix and winning seventeen. BRM wo ...
-associated factors", or BAF (SWI/SNF-A) and "Polybromo-associated BAF", which is also known as PBAF (SWI/SNF-B). There are also ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species ...
'' analogs of SWI/SNF, known as "Brahma Associated Protein", or BAP and "Polybromo-associated BAP", also known as PBAP.


Mechanism of action

It has been found that the SWI/SNF complex (in yeast) is capable of altering the position of
nucleosomes A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
along DNA. These alterations are classified in three different ways, and they are seen as the processes of sliding nucleosomes, ejecting nucleosomes, and ejecting only certain components of the nucleosome. Due to the actions performed by the SWI/SNF subfamily, they are referred to as "access remodellers" and promote gene expression by exposing binding sites so that transcription factors can bind more easily. Two mechanisms for nucleosome remodeling by SWI/SNF have been proposed. The first model contends that a unidirectional diffusion of a twist defect within the nucleosomal DNA results in a corkscrew-like propagation of DNA over the octamer surface that initiates at the DNA entry site of the nucleosome. The other is known as the "bulge" or "loop-recapture" mechanism and it involves the dissociation of DNA at the edge of the nucleosome with re-association of DNA inside the nucleosome, forming a DNA bulge on the octamer surface. The DNA loop would then propagate across the surface of the
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wr ...
octamer in a wave-like manner, resulting in the re-positioning of DNA without changes in the total number of histone-DNA contacts. A recent study has provided strong evidence against the twist diffusion mechanism and has further strengthened the loop-recapture model.


Role as a tumor suppressor

The mammalian SWI/SNF (mSWI/SNF) complex functions as a tumor suppressor in many human malignant cancers. Early studies identified that SWI/SNF subunits were frequently absent in cancer cell lines. SWI/SNF was first identified in 1998 as a tumor suppressor in
rhabdoid tumor Malignant rhabdoid tumour (MRT) is a very aggressive form of tumour originally described as a variant of Wilms' tumour, which is primarily a kidney tumour that occurs mainly in children. MRT was first described as a variant of Wilms' tumour of th ...
s, a rare pediatric malignant cancer. Other instances of SWI/SNF acting as a tumor suppressor comes from the heterozygous deletion of BAF47 or alteration of BAF47. These instances result in cases of chronic and acute CML and in rarer cases,
Hodgkin's lymphoma Hodgkin lymphoma (HL) is a type of lymphoma, in which cancer originates from a specific type of white blood cell called lymphocytes, where multinucleated Reed–Sternberg cells (RS cells) are present in the patient's lymph nodes. The condition wa ...
, respectively. To prove that BAF47, also known as
SMARCB1 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 is a protein that in humans is encoded by the ''SMARCB1'' gene. Function The protein encoded by this gene is part of a complex that relieves repressiv ...
, acts as a tumor suppressor, experiments resulting in the formation of rhabdoid tumors in mice were conducted via total knockout of BAF47. As DNA sequencing costs diminished, many tumors were sequenced for the first time around 2010. Several of these studies revealed SWI/SNF to be a tumor suppressor in a number of diverse malignancies. Several studies revealed that subunits of the mammalian complex, including ARID1A, PBRM1, SMARCB1, SMARCA4, and ARID2, are frequently mutated in human cancers. It has been noted that total loss of BAF47 is extremely rare and instead, most cases of tumors that resulted from SWI/SNF subunits come from BRG1 deletion, BRM deletion, or total loss of both subunits. Further analysis concluded that total loss of both subunits was present in about 10% of tumor cell lines after 100 cell lines were looked at. A meta-analysis of many sequencing studies demonstrated SWI/SNF to be mutated in approximately 20% of human malignancies.


Structure of the SWI/SNF complex

Electron microscopy studies of SWI/SNF and RSC (SWI/SNF-B) reveal large, lobed 1.1-1.3 MDa structures. These structures resemble
RecA RecA is a 38 kilodalton protein essential for the repair and maintenance of DNA. A RecA structural and functional homolog has been found in every species in which one has been seriously sought and serves as an archetype for this class of homolog ...
and cover both sides of a conserved section of the
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
domain. The domain also contains a separate domain
HSA
that is capable of binding actin, and resides on the
N-terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
. The bromo domain present is responsible for recognizing and binding lysines that have been acetylated. No atomic-resolution structures of the entire SWI/SNF complex have been obtained to date, due to the protein complex being highly dynamic and composed of many subunits. However, domains and several individual subunits from yeast and mammals have been described. In particular, the cryo-EM structure of the ATPase Snf2 in complex with a nucleosome shows that nucleosomal DNA is locally deformed at the site of binding. A model of the mammalian ATPase SMARCA4 shows similar features, based on the high degree of sequence homology with yeast Snf2. The interface between two subunits, BAF155 (SMARCC1) and BAF47 (SMARCB1) was also resolved, providing important insights into the mechanisms of the SWI/SNF complex assembly pathway.


SWIB/MDM2 protein domain

The
protein domain In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of s ...
, SWIB/MDM2, short for SWI/SNF complex B/MDM2 is an important domain. This protein domain has been found in both SWI/SNF complex B and in the negative regulator of the
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
tumor suppressor MDM2. It has been shown that MDM2 is homologous to the SWIB complex.


Function

The primary function of the SWIB protein domain is to aid
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
. In
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitut ...
, this protein domain expresses certain genes, in particular BADH2, GAL1, GAL4, and SUC2. It works by increasing
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
. It has
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
activity, meaning it breaks down ATP, the basic unit of energy currency. This destabilizes the interaction between DNA and histones. The destabilization that occurs disrupts
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
and opens up the transcription-binding domains. Transcription factors can then bind to this site, leading to an increase in transcription.


Protein interaction

The various protein subunits that make up the SWI/SNF complex interact with each other in different configurations to form three distinct types of SWI/SNF complex: canonical BAF (cBAF), polybromo-associated BAF (pBAF) and non-canonical BAF (ncBAF). Specifically, cBAF is currently thought to regulate gene
enhancers In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins ( activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcriptio ...
, while pBAF and ncBAF function at regions proximal to gene promoters. In addition to their many interactions within the family of SWI/SNF related proteins, some subunits such as SNF5 and BAF155 are capable of interacting with transcription factors, such as
c-MYC ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' (MYC), ''l-myc'' (MYCL), and ''n-myc'' (MYCN). ''c-myc'' (also sometimes referre ...
and the FOS and JUN family proteins of the AP-1 complex.


Structure

This protein domain is known to contain one short
alpha helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
.


Family members

Below is a list of yeast SWI/SNF family members with human and ''Drosophila''
ortholog Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a spec ...
s:


History

The SWI/SNF complex was first discovered in the yeast, ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been o ...
''. It was named after initially screening for mutations that would affect the pathways for both yeast mating types switching (SWI) and sucrose non-fermenting (SNF).


See also

* Mdm2 * Chromatin Structure Remodeling (RSC) Complex *
Transcription coregulator In molecular biology and genetics, transcription coregulators are proteins that interact with transcription factors to either activate or repress the transcription of specific genes. Transcription coregulators that activate gene transcription are ...


References


External links


Nextbio
{{DEFAULTSORT:SWI SNF Enzymes Transcription coregulators