Astrocytes
   HOME

TheInfoList



OR:

Astrocytes (from
Ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic p ...
, , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped
glial cells Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
in the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a ve ...
and
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
. They perform many functions, including biochemical control of endothelial cells that form the blood–brain barrier, provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, regulation of cerebral blood flow, and a role in the repair and
scarring A scar (or scar tissue) is an area of fibrous tissue that replaces normal skin after an injury. Scars result from the biological process of wound repair in the skin, as well as in other organs, and tissues of the body. Thus, scarring is a na ...
process of the brain and spinal cord following infection and traumatic injuries. The proportion of astrocytes in the brain is not well defined; depending on the counting technique used, studies have found that the astrocyte proportion varies by region and ranges from 20% to 40% of all glia. Another study reports that astrocytes are the most numerous cell type in the brain. Astrocytes are the major source of cholesterol in the central nervous system. Apolipoprotein E transports cholesterol from astrocytes to neurons and other glial cells, regulating cell signaling in the brain. Astrocytes in humans are more than twenty times larger than in rodent brains, and make contact with more than ten times the number of synapses. Research since the mid-1990s has shown that astrocytes propagate intercellular Ca2+ waves over long distances in response to stimulation, and, similar to neurons, release transmitters (called
gliotransmitter Gliotransmitters are chemicals released from glial cells that facilitate neuronal communication between neurons and other glial cells. They are usually induced from Ca2+ signaling, although recent research has questioned the role of Ca2+ in gliotra ...
s) in a Ca2+-dependent manner. Data suggest that astrocytes also signal to neurons through Ca2+-dependent release of glutamate. Such discoveries have made astrocytes an important area of research within the field of
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developme ...
.


Structure

Astrocytes are a sub-type of
glial cells Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
. They are also known as ''astrocytic glial cells.'' Star-shaped, their many processes envelop synapses made by neurons. In humans, a single astrocyte cell can interact with up to 2 million synapses at a time. Astrocytes are classically identified using
histological Histology, also known as microscopic anatomy or microanatomy, is the branch of biology which studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures vis ...
analysis; many of these cells express the intermediate filament
glial fibrillary acidic protein Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the ''GFAP'' gene in humans. It is a type III intermediate filament (IF) protein that is expressed by numerous cell types of the central nervous system (CNS), including astro ...
(GFAP). Several forms of astrocytes exist in the central nervous system including ''fibrous'' (in white matter), ''protoplasmic'' (in grey matter), and ''radial''. The fibrous glia are usually located within white matter, have relatively few organelles, and exhibit long unbranched cellular processes. This type often has astrocytic endfoot processes that physically connect the cells to the outside of
capillary A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the bod ...
walls when they are in proximity to them. The protoplasmic glia are the most prevalent and are found in grey matter tissue, possess a larger quantity of organelles, and exhibit short and highly branched tertiary processes. The
radial glial cell Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ...
s are disposed in planes perpendicular to the axes of ventricles. One of their processes abuts the
pia mater Pia mater ( or ),Entry "pia mater"
in
neuron migration The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fiel ...
. Müller cells of the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
and Bergmann glia cells of the
cerebellar cortex The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebe ...
represent an exception, being present still during adulthood. When in proximity to the pia mater, all three forms of astrocytes send out processes to form the pia-glial membrane.


Development

Astrocytes are macroglial cells in the central nervous system. Astrocytes are derived from heterogeneous populations of progenitor cells in the neuroepithelium of the developing central nervous system. There is remarkable similarity between the well known genetic mechanisms that specify the lineage of diverse
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
subtypes and that of macroglial cells. Just as with neuronal cell specification, canonical signaling factors like sonic hedgehog (SHH),
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their ...
(FGFs), WNTs and bone morphogenetic proteins (BMPs), provide positional information to developing macroglial cells through morphogen gradients along the dorsal–ventral, anterior–posterior and medial–lateral axes. The resultant patterning along the neuraxis leads to segmentation of the neuroepithelium into progenitor domains (p0, p1 p2, p3 and pMN) for distinct neuron types in the developing spinal cord. On the basis of several studies it is now believed that this model also applies to macroglial cell specification. Studies carried out by Hochstim and colleagues have demonstrated that three distinct populations of astrocytes arise from the p1, p2 and p3 domains. These subtypes of astrocytes can be identified on the basis of their expression of different transcription factors (PAX6, NKX6.1) and cell surface markers ( reelin and SLIT1). The three populations of astrocyte subtypes which have been identified are 1) dorsally located VA1 astrocytes, derived from p1 domain, express PAX6 and reelin 2) ventrally located VA3 astrocytes, derived from p3, express NKX6.1 and SLIT1 and 3) and intermediate white-matter located VA2 astrocyte, derived from the p2 domain, which express PAX6, NKX6.1, reelin and SLIT1. After astrocyte specification has occurred in the developing CNS, it is believed that astrocyte precursors migrate to their final positions within the nervous system before the process of terminal differentiation occurs.


Function

Astrocytes help form the physical structure of the brain, and are thought to play a number of active roles, including the secretion or absorption of neural transmitters and maintenance of the blood–brain barrier. The concept of a tripartite synapse has been proposed, referring to the tight relationship occurring at synapses among a presynaptic element, a postsynaptic element and a glial element. * Structural: They are involved in the physical structuring of the brain. Astrocytes get their name because they are "star-shaped". They are the most abundant glial cells in the brain that are closely associated with neuronal synapses. They regulate the transmission of electrical impulses within the brain. * Glycogen fuel reserve buffer: Astrocytes contain glycogen and are capable of gluconeogenesis. The astrocytes next to neurons in the frontal cortex and
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
store and release glucose. Thus, astrocytes can fuel neurons with glucose during periods of high rate of glucose consumption and glucose shortage. A recent research on rats suggests there may be a connection between this activity and physical exercise. * Metabolic support: They provide neurons with nutrients such as lactate. *Glucose sensing: normally associated with neurons, the detection of interstitial glucose levels within the brain is also controlled by astrocytes. Astrocytes ''in vitro'' become activated by low glucose and are ''in vivo'' this activation increases gastric emptying to increase digestion. * Blood–brain barrier: The astrocyte end-feet encircling endothelial cells were thought to aid in the maintenance of the blood–brain barrier, but recent research indicates that they do not play a substantial role; instead, it is the
tight junctions Tight junctions, also known as occluding junctions or ''zonulae occludentes'' (singular, ''zonula occludens''), are multiprotein junctional complexes whose canonical function is to prevent leakage of solutes and water and seals between the epith ...
and basal lamina of the cerebral endothelial cells that play the most substantial role in maintaining the barrier. However, it has recently been shown that astrocyte activity is linked to blood flow in the brain, and that this is what is actually being measured in fMRI. * Transmitter uptake and release: Astrocytes express plasma membrane transporters such as
glutamate transporter Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the ex ...
s for several neurotransmitters, including glutamate, ATP, and GABA. More recently, astrocytes were shown to release glutamate or ATP in a vesicular, Ca2+-dependent manner. (This has been disputed for hippocampal astrocytes.) * Regulation of ion concentration in the extracellular space: Astrocytes express
potassium channels Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of cel ...
at a high density. When neurons are active, they release potassium, increasing the local extracellular concentration. Because astrocytes are highly permeable to potassium, they rapidly clear the excess accumulation in the extracellular space. If this function is interfered with, the extracellular concentration of potassium will rise, leading to neuronal depolarization by the
Goldman equation The Goldman–Hodgkin–Katz voltage equation, more commonly known as the Goldman equation, is used in cell membrane physiology to determine the reversal potential across a cell's membrane, taking into account all of the ions that are permeant t ...
. Abnormal accumulation of extracellular potassium is well known to result in epileptic neuronal activity. * Modulation of synaptic transmission: In the
supraoptic nucleus The supraoptic nucleus (SON) is a nucleus of magnocellular neurosecretory cells in the hypothalamus of the mammalian brain. The nucleus is situated at the base of the brain, adjacent to the optic chiasm. In humans, the SON contains about 3,000 n ...
of the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamu ...
, rapid changes in astrocyte morphology have been shown to affect heterosynaptic transmission between neurons. In the
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
, astrocytes suppress synaptic transmission by releasing ATP, which is
hydrolyzed Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
by
ectonucleotidase Ectonucleotidases consist of families of nucleotide metabolizing enzymes that are expressed on the plasma membrane and have externally oriented active sites. These enzymes metabolize nucleotides to nucleosides. The contribution of ectonucleotidase ...
s to yield
adenosine Adenosine ( symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside building ...
. Adenosine acts on neuronal
adenosine receptor The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a di ...
s to inhibit synaptic transmission, thereby increasing the
dynamic range Dynamic range (abbreviated DR, DNR, or DYR) is the ratio between the largest and smallest values that a certain quantity can assume. It is often used in the context of signals, like sound and light. It is measured either as a ratio or as a base-1 ...
available for
LTP LTP may refer to: Biology and medicine * Lateral tibial plateau, part of a leg bone * Lipid transfer proteins, proteins found in plant tissues * Long-term potentiation (neurophysiology), a long-lasting enhancement in signal transmission between ...
. * Vasomodulation: Astrocytes may serve as intermediaries in neuronal regulation of blood flow. * Promotion of the myelinating activity of oligodendrocytes: Electrical activity in neurons causes them to release ATP, which serves as an important stimulus for myelin to form. However, the ATP does not act directly on
oligodendrocyte Oligodendrocytes (), or oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons in the central nervous system of jawed vertebrates, equivalent to the function performed by Schwann cells in the ...
s. Instead, it causes astrocytes to secrete cytokine leukemia inhibitory factor (LIF), a regulatory protein that promotes the myelinating activity of oligodendrocytes. This suggests that astrocytes have an executive-coordinating role in the brain. * Nervous system repair: Upon injury to nerve cells within the central nervous system, astrocytes fill up the space to form a
glial scar Glial scar formation (gliosis) is a reactive cellular process involving astrogliosis that occurs after injury to the central nervous system. As with scarring in other organs and tissues, the glial scar is the body's mechanism to protect and begin ...
, and may contribute to neural repair. The role of astrocytes in CNS regeneration following injury is not well understood though. The glial scar has traditionally been described as an impermeable barrier to regeneration, thus implicating a negative role in axon regeneration. However, recently, it was found through genetic ablation studies that astrocytes are actually required for regeneration to occur. More importantly, the authors found that the astrocyte scar is actually essential for stimulated axons (that axons that have been coaxed to grow via neurotrophic supplementation) to extend through the injured spinal cord. Astrocytes that have been pushed into a reactive phenotype (termed
astrogliosis Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, a ...
, defined by upregulation of GFAP expression, a definition still under debate) may actually be toxic to neurons, releasing signals that can kill neurons. Much work, however, remains to elucidate their role in nervous system injury. *Long-term potentiation: Scientists debate whether astrocytes integrate learning and memory in the hippocampus. Recently it has been shown that engrafting human glial progenitor cell in the nascent mice brains will cause the cells to differentiate into astrocytes. After differentiation these cells increase LTP and improve memory performance in the mice. *Circadian clock: Astrocytes alone are sufficient to drive the molecular oscillations in the SCN and circadian behavior in mice, and thus can autonomously initiate and sustain complex mammalian behavior. *The switch of the nervous system: Based on the evidence listed below, it has been recently conjectured in, that macro glia (and astrocytes in particular) act both as a lossy neurotransmitter capacitor and as the logical switch of the nervous system. I.e., macroglia either block or enable the propagation of the stimulus along the nervous system, depending on their membrane state and the level of the stimulus. Astrocytes are linked by
gap junction Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
s, creating an electrically coupled (functional)
syncytium A syncytium (; plural syncytia; from Greek: σύν ''syn'' "together" and κύτος ''kytos'' "box, i.e. cell") or symplasm is a multinucleate cell which can result from multiple cell fusions of uninuclear cells (i.e., cells with a single nucleus) ...
. Because of this ability of astrocytes to communicate with their neighbors, changes in the activity of one astrocyte can have repercussions on the activities of others that are quite distant from the original astrocyte. An influx of Ca2+ ions into astrocytes is the essential change that ultimately generates calcium waves. Because this influx is directly caused by an increase in blood flow to the brain, calcium waves are said to be a kind of hemodynamic response function. An increase in intracellular calcium concentration can propagate outwards through this functional syncytium. Mechanisms of calcium wave propagation include diffusion of calcium ions and IP3 through gap junctions and extracellular ATP signalling. Calcium elevations are the primary known axis of activation in astrocytes, and are necessary and sufficient for some types of astrocytic glutamate release. Given the importance of calcium signaling in astrocytes, tight regulatory mechanisms for the progression of the spatio-temporal calcium signaling have been developed. Via mathematical analysis it has been shown that localized inflow of Ca2+ ions yields a localized raise in the cytosolic concentration of Ca2+ ions. Moreover, cytosolic Ca2+ accumulation is independent of every intracellular calcium flux and depends on the Ca2+ exchange across the membrane, cytosolic calcium diffusion, geometry of the cell, extracellular calcium perturbation, and initial concentrations.


Tripartite synapse

Within the dorsal horn of the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
, activated astrocytes have the ability to respond to almost all
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neur ...
and, upon activation, release a multitude of neuroactive molecules such as glutamate, ATP,
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
(NO), and
prostaglandins The prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are deriv ...
(PG), which in turn influences neuronal excitability. The close association between astrocytes and
presynaptic In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
and
postsynaptic Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous sys ...
terminals as well as their ability to integrate synaptic activity and release neuromodulators has been termed the tripartite synapse. Synaptic modulation by astrocytes takes place because of this three-part association.


Clinical significance


Astrocytomas

Astrocytoma Astrocytomas are a type of brain tumor. They originate in a particular kind of glial cells, star-shaped brain cells in the cerebrum called astrocytes. This type of tumor does not usually spread outside the brain and spinal cord and it does not usu ...
s are primary intracranial
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
s that develop from astrocytes. It is also possible that glial progenitors or
neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
s can give rise to astrocytomas. These tumors may occur in many parts of the brain and/or spinal cord. Astrocytomas are divided into two categories: low grade (I and II) and high grade (III and IV). Low grade tumors are more common in children, and high grade tumors are more common in adults. Malignant astrocytomas are more prevalent among men, contributing to worse survival.Astrocytomas
. International RadioSurgery Association (2010).
Pilocytic astrocytoma Pilocytic astrocytoma (and its variant pilomyxoid astrocytoma) is a brain tumor that occurs most commonly in children and young adults (in the first 20 years of life). They usually arise in the cerebellum, near the brainstem, in the hypothalamic r ...
s are grade I tumors. They are considered benign and slow growing tumors. Pilocytic astrocytomas frequently have cystic portions filled with fluid and a nodule, which is the solid portion. Most are located in the cerebellum. Therefore, most symptoms are related to balance or coordination difficulties. They also occur more frequently in children and teens.Astrocytoma Tumors
American Association of Neurological Surgeons (August 2005).
Fibrillary astrocytoma Fibrillary astrocytomas are a group of primary slow-growing brain tumors that typically occur in adults between the ages of 20 and 50. Symptoms Seizures, frequent mood changes, and headaches are among the earliest symptoms of the tumor. Hemipar ...
s are grade II tumors. They grow relatively slowly so are usually considered benign, but they infiltrate the surrounding healthy tissue and can become
malignant Malignancy () is the tendency of a medical condition to become progressively worse. Malignancy is most familiar as a characterization of cancer. A ''malignant'' tumor contrasts with a non-cancerous ''benign'' tumor in that a malignancy is not s ...
. Fibrillary astrocytomas commonly occur in younger people, who often present with seizures.
Anaplastic astrocytoma Anaplastic astrocytoma is a rare WHO grade III type of astrocytoma, which is a type of cancer of the brain. In the United States, the annual incidence rate for anaplastic astrocytoma is 0.44 per 100,000 people. Signs and symptoms Initial present ...
s are grade III malignant tumors. They grow more rapidly than lower grade tumors. Anaplastic astrocytomas recur more frequently than lower grade tumors because their tendency to spread into surrounding tissue makes them difficult to completely remove surgically.
Glioblastoma multiforme Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ch ...
is a grade IV cancer that may originate from astrocytes or an existing astrocytoma. Approximately 50% of all brain tumors are glioblastomas. Glioblastomas can contain multiple glial cell types, including astrocytes and
oligodendrocyte Oligodendrocytes (), or oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons in the central nervous system of jawed vertebrates, equivalent to the function performed by Schwann cells in the ...
s. Glioblastomas are generally considered to be the most invasive type of glial tumor, as they grow rapidly and spread to nearby tissue. Treatment may be complicated, because one tumor cell type may die off in response to a particular treatment while the other cell types may continue to multiply.


Neurodevelopmental disorders

Astrocytes have emerged as important participants in various
neurodevelopmental disorder Neurodevelopmental disorders are a group of disorders that affect the development of the nervous system, leading to abnormal brain function which may affect emotion, learning ability, self-control, and memory. The effects of neurodevelopmental ...
s. This view states that astrocyte dysfunction may result in improper neural circuitry, which underlies certain psychiatric disorders such as
autism spectrum disorders The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental disorder, neurodevelopmental condition (or conditions) ...
and
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social withdra ...
.


Chronic pain

Under normal conditions, pain conduction begins with some noxious signal followed by an action potential carried by
nociceptive Nociception (also nocioception, from Latin ''nocere'' 'to harm or hurt') is the Somatosensory system, sensory nervous system's process of encoding Noxious stimulus, noxious stimuli. It deals with a series of events and processes required for an org ...
(pain sensing) afferent neurons, which elicit
excitatory postsynaptic potentials In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential, caused by the ...
(EPSP) in the dorsal horn of the spinal cord. That message is then relayed to the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting of ...
, where we translate those EPSPs into "pain." Since the discovery of astrocyte-neuron signaling, our understanding of the conduction of pain has been dramatically complicated. Pain processing is no longer seen as a repetitive relay of signals from body to brain, but as a complex system that can be up- and down-regulated by a number of different factors. One factor at the forefront of recent research is in the pain-potentiating synapse located in the dorsal horn of the spinal cord and the role of astrocytes in encapsulating these synapses. Garrison and co-workers were the first to suggest association when they found a correlation between astrocyte
hypertrophy Hypertrophy is the increase in the volume of an organ or tissue due to the enlargement of its component cells. It is distinguished from hyperplasia, in which the cells remain approximately the same size but increase in number.Updated by Linda J ...
in the dorsal horn of the spinal cord and hypersensitivity to pain after peripheral nerve injury, typically considered an indicator of glial activation after injury. Astrocytes detect neuronal activity and can release chemical transmitters, which in turn control synaptic activity. In the past,
hyperalgesia Hyperalgesia ( or ; 'hyper' from Greek ὑπέρ (huper, “over”), '-algesia' from Greek algos, ἄλγος (pain)) is an abnormally increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves and can ...
was thought to be modulated by the release of
substance P Substance P (SP) is an undecapeptide (a peptide composed of a chain of 11 amino acid residues) and a member of the tachykinin neuropeptide family. It is a neuropeptide, acting as a neurotransmitter and as a neuromodulator. Substance P and its clo ...
and excitatory amino acids (EAA), such as glutamate, from the presynaptic afferent nerve terminals in the spinal cord dorsal horn. Subsequent activation of
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, better known as AMPA, is a compound that is a specific agonist for the AMPA receptor, where it mimics the effects of the neurotransmitter glutamate. There are several types of glutamatergic ...
(α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid),
NMDA ''N''-methyl--aspartic acid or ''N''-methyl--aspartate (NMDA) is an amino acid derivative that acts as a specific agonist at the NMDA receptor mimicking the action of glutamate, the neurotransmitter which normally acts at that receptor. Unlike ...
(N-methyl-D-aspartate) and
kainate Kainic acid, or kainate, is an acid that naturally occurs in some seaweed. Kainic acid is a potent neuroexcitatory amino acid agonist that acts by activating receptors for glutamate, the principal excitatory neurotransmitter in the central nervo ...
subtypes of ionotropic
glutamate receptor Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system a ...
s follows. It is the activation of these receptors that potentiates the pain signal up the spinal cord. This idea, although true, is an oversimplification of pain transduction. A litany of other neurotransmitter and neuromodulators, such as
calcitonin gene-related peptide Calcitonin gene-related peptide (CGRP) is a member of the calcitonin family of peptides consisting of calcitonin, amylin, adrenomedullin, adrenomedullin 2 ( intermedin) and calcitonin‑receptor‑stimulating peptide. Calcitonin is mainly produ ...
(CGRP),
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of ...
(ATP),
brain-derived neurotrophic factor Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the cano ...
(BDNF),
somatostatin Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-couple ...
,
vasoactive intestinal peptide Vasoactive intestinal peptide, also known as vasoactive intestinal polypeptide or VIP, is a peptide hormone that is vasoactive in the intestine. VIP is a peptide of 28 amino acid residues that belongs to a glucagon/secretin superfamily, the ligan ...
(VIP),
galanin Galanin is a neuropeptide encoded by the ''GAL'' gene, that is widely expressed in the brain, spinal cord, and gut of humans as well as other mammals. Galanin signaling occurs through three G protein-coupled receptors. Much of galanin's function ...
, and
vasopressin Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then travel ...
are all synthesized and released in response to
noxious stimuli A noxious stimulus is a stimulus strong enough to threaten the body’s integrity (i.e. cause damage to tissue). Noxious stimulation induces peripheral afferents responsible for transducing pain (including A-delta and C- nerve fibers, as well as f ...
. In addition to each of these regulatory factors, several other interactions between pain-transmitting neurons and other neurons in the dorsal horn have added impact on pain pathways.


Two states of persistent pain

After persistent peripheral tissue damage there is a release of several factors from the injured tissue as well as in the spinal dorsal horn. These factors increase the responsiveness of the dorsal horn pain-projection neurons to ensuing stimuli, termed "spinal sensitization," thus amplifying the pain impulse to the brain. Release of glutamate, substance P, and calcitonin gene-related peptide (CGRP) mediates NMDAR activation (originally silent because it is plugged by Mg2+), thus aiding in depolarization of the postsynaptic pain-transmitting neurons (PTN). In addition, activation of IP3 signaling and
MAPK A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of protein kinase that is specific to the amino acids serine and threonine (i.e., a serine/threonine-specific protein kinase). MAPKs are involved in directing cellular responses to ...
s (mitogen-activated protein kinases) such as ERK and
JNK c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and ar ...
, bring about an increase in the synthesis of inflammatory factors that alter glutamate transporter function. ERK also further activates AMPARs and NMDARs in neurons.
Nociception Nociception (also nocioception, from Latin ''nocere'' 'to harm or hurt') is the sensory nervous system's process of encoding noxious stimuli. It deals with a series of events and processes required for an organism to receive a painful stimulus, co ...
is further sensitized by the association of ATP and substance P with their respective receptors (P2X3) and
neurokinin 1 receptor The tachykinin receptor 1 (TACR1) also known as neurokinin 1 receptor (NK1R) or substance P receptor (SPR) is a G protein coupled receptor found in the central nervous system and peripheral nervous system. The endogenous ligand for this receptor ...
(NK1R), as well as activation of
metabotropic glutamate receptors The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate rece ...
and release of BDNF. Persistent presence of glutamate in the synapse eventually results in dysregulation of
GLT1 Excitatory amino acid transporter 2 (EAAT2) also known as solute carrier family 1 member 2 (SLC1A2) and glutamate transporter 1 (GLT-1) is a protein that in humans is encoded by the ''SLC1A2'' gene. Alternatively spliced transcript variants of thi ...
and GLAST, crucial transporters of glutamate into astrocytes. Ongoing excitation can also induce ERK and JNK activation, resulting in release of several inflammatory factors. As noxious pain is sustained, spinal sensitization creates transcriptional changes in the neurons of the dorsal horn that lead to altered function for extended periods. Mobilization of Ca2+ from internal stores results from persistent synaptic activity and leads to the release of glutamate, ATP, tumor necrosis factor-α (TNF-α), interleukin 1β (
IL-1β Interleukin-1 beta (IL-1β) also known as leukocytic pyrogen, leukocytic endogenous mediator, mononuclear cell factor, lymphocyte activating factor and other names, is a cytokine protein that in humans is encoded by the ''IL1B'' gene."Catabolin" ...
), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2). Activated astrocytes are also a source of
matrix metalloproteinase Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs b ...
2 (
MMP2 72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the ''MMP2'' gene. The ''MMP2'' gene is located on chromosome 16 at position 12.2. Function Proteins of the ...
), which induces pro-IL-1β cleavage and sustains astrocyte activation. In this chronic signaling pathway, p38 is activated as a result of
IL-1β Interleukin-1 beta (IL-1β) also known as leukocytic pyrogen, leukocytic endogenous mediator, mononuclear cell factor, lymphocyte activating factor and other names, is a cytokine protein that in humans is encoded by the ''IL1B'' gene."Catabolin" ...
signaling, and there is a presence of chemokines that trigger their receptors to become active. In response to nerve damage,
heat shock proteins Heat shock proteins (HSP) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including expo ...
(HSP) are released and can bind to their respective TLRs, leading to further activation.


Other pathologies

Other clinically significant pathologies involving astrocytes include
astrogliosis Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, a ...
and astrocytopathy. Examples of these include
multiple sclerosis Multiple (cerebral) sclerosis (MS), also known as encephalomyelitis disseminata or disseminated sclerosis, is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This d ...
, anti-AQP4+
neuromyelitis optica Neuromyelitis optica spectrum disorders (NMOSD), including neuromyelitis optica (NMO), are autoimmune diseases characterized by acute inflammation of the optic nerve (optic neuritis, ON) and the spinal cord (myelitis). Episodes of ON and myelitis ...
,
Rasmussen's encephalitis Rasmussen's encephalitis is a rare inflammatory neurological disease, characterized by frequent and severe seizures, loss of motor skills and speech, hemiparesis (weakness on one side of the body), encephalitis (inflammation of the brain), and de ...
,
Alexander disease Alexander disease is a very rare autosomal dominant leukodystrophy, which are neurological conditions caused by anomalies in the myelin which protects nerve fibers in the brain. The most common type is the infantile form that usually begins duri ...
, and
amyotrophic lateral sclerosis Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or Lou Gehrig's disease, is a neurodegenerative disease that results in the progressive loss of motor neurons that control voluntary muscles. ALS is the most comm ...
. Studies have shown that astrocytes may be implied in
neurodegenerative disease A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
s, such as
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
,
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
,
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
,
Stuttering Stuttering, also known as stammering, is a speech disorder in which the flow of speech is disrupted by involuntary repetitions and prolongations of sounds, syllables, words, or phrases as well as involuntary silent pauses or blocks in which the ...
and
amyotrophic lateral sclerosis Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or Lou Gehrig's disease, is a neurodegenerative disease that results in the progressive loss of motor neurons that control voluntary muscles. ALS is the most comm ...
, and in acute brain injuries, such as intracerebral hemorrhage and traumatic brain injury. Gomori-positive Astrocytes and Brain Dysfunction A type of astrocyte with an aging-related pathology has been described over the last fifty years. Astrocytes of this subtype possess prominent cytoplasmic granules that are intensely stained by Gomori's chrome alum hematoxylin stain, and hence are termed Gomori-positive (GP) astrocytes. They can be found throughout the brain, but are by far the most abundant in the olfactory bulbs, medial habenula, dentate gyrus of the hippocampus, arcuate nucleus of the hypothalamus, and in the dorsal medulla, just beneath the area postrema. Gomori-positive cytoplasmic granules are derived from damaged mitochondria engulfed within lysosomes. Cytoplasmic granules contain undigested remnants of mitochondrial structures. These contents include heme-linked copper and iron atoms remaining from mitochondrial enzymes. These chemical substances account for the pseudoperoxidase activity of Gomori-positive granules that can utilized to stain for these granules. Oxidative stress is believed to be cause of damage to these astrocytes. However, the exact nature of this stress is uncertain. Brain regions enriched in Gomori-positive astrocytes also contain a sub-population of specialized astrocytes that synthesize Fatty Acid Binding Protein 7 (FABP7). Indeed, astrocytes in the hypothalamus that synthesize FABP7 have also been shown to possess Gomori-positive granules. Thus, a connection between these two glial features is apparent. Recent data have shown that astrocytes, but not neurons, possess the mitochondrial enzymes needed to metabolize fatty acids, and that the resulting oxidative stress can damage mitochondria. Thus, an increased uptake and oxidation of fatty acids in glia containing FABP7 is likely to cause the oxidative stress and damage to mitochondria in these cells. Also, FABP proteins have recently been shown to interact with a protein called synuclein to cause mitochondrial damage. Possible roles in pathophysiology Astrocytes can transfer mitochondria into adjacent neurons to improve neuronal function. It is therefore plausible that the damage to astrocyte mitochondria seen in GP astrocytes could affect the activity of neurons. A number of hypothalamic functions show declines in aging that may be related to GP astrocytes. For example, GP astrocytes are in close contact with neurons that make a neurotransmitter called dopamine in both the rat and human hypothalamus. The dopamine produced by these neurons is carried to the nearby pituitary gland to inhibit the release of a hormone called prolactin from the pituitary. The activity of dopaminergic neurons declines during aging, leading to elevations in blood levels of prolactin that can provoke breast cancer. An aging-associated change in astrocyte function might contribute to this change in dopaminergic activity. FABP7+ astrocytes are in close contact with neurons in the arcuate nucleus of the hypothalamus that are responsive to a hormone called leptin that is produced by fat cells. Leptin-sensitive neurons regulate appetite and body weight. FABP7+ astrocytes regulate the responsiveness of these neurons to leptin. Mitochondrial damage in these astrocytes could thus alter the function of leptin-sensitive neurons and could contribute to an aging-associated dysregulation of feeding and body weight. GP astrocytes may also be involved in the hypothalamic regulation of overall glucose metabolism. Recent data show that astrocytes function as glucose sensors and exert a commanding influence upon neuronal reactivity to changes in extracellular glucose. GP astrocytes possess high-capacity GLUT2-type glucose transporter proteins and appear to modulate the neuronal responses to glucose. Hypothalamic cells monitor blood levels of glucose and exert an influence upon blood glucose levels via an altered input to autonomic circuits that innervate liver and muscle cells. The importance of astrocytes in aging-related disturbances in glucose metabolism has been recently illustrated by studies of diabetic animals. A single infusion of a protein called fibroblast growth factor-1 into the hypothalamus has been shown to permanently normalize blood glucose levels in diabetic rodents. This remarkable cure of diabetes mellitus is mediated by astrocytes. The most prominent genes activated by FGF-1 treatment include the genes responsible for the synthesis of FABP6 and FABP7 by astrocytes. These data confirm the importance of FABP7+ astrocytes for the control of blood glucose. Dysfunction of FABP7+/Gomori-positive astrocytes may contribute to the aging-related development of diabetes mellitus. GP astrocytes are also present in the dentate gyrus of the hippocampus in both rodent and human brains. The hippocampus undergoes severe degenerative changes during aging in Alzheimer's disease. The reasons for these degenerative changes are currently being hotly debated. A recent study has shown that levels of glial proteins, and NOT neuronal proteins, are most abnormal in Alzheimer's disease. The glial protein most severely affected is FABP5. Another study showed that 100% of hippocampal astrocytes that contain FABP7 also contain FABP5. These data suggest that FABP7+/Gomori-positive astrocytes may play a role in Alzheimer's disease. An altered glial function in this region could compromise the function of dentate gyrus neurons and also the function of axons that terminate in the dentate gyrus. Many such axons originate in the lateral entorhinal cortex, which is the first brain region to show degeneration in Alzheimer's disease. Astrocyte pathology in the hippocampus thus might make a contribution to the pathology of Alzheimer's disease.


Research

A study performed in November 2010 and published March 2011, was done by a team of scientists from the
University of Rochester The University of Rochester (U of R, UR, or U of Rochester) is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees. The University of Roc ...
and
University of Colorado School of Medicine The University of Colorado School of Medicine is the medical school of the University of Colorado system. It is located at the Anschutz Medical Campus in Aurora, Colorado, one of the four University of Colorado campuses, six miles east of downtown ...
. They did an experiment to attempt to repair
trauma Trauma most often refers to: * Major trauma, in physical medicine, severe physical injury caused by an external source * Psychological trauma, a type of damage to the psyche that occurs as a result of a severely distressing event *Traumatic i ...
to the
Central Nervous System The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all par ...
of an adult rat by replacing the glial cells. When the glial cells were injected into the injury of the adult rat's spinal cord, astrocytes were generated by exposing human glial precursor cells to bone morphogenetic protein (bone morphogenetic protein is important because it is considered to create tissue architecture throughout the body). So, with the bone protein and human glial cells combined, they promoted significant recovery of conscious foot placement,
axonal An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action po ...
growth, and obvious increases in neuronal survival in the spinal cord laminae. On the other hand, human glial
precursor cells In cell biology, a precursor cell, also called a blast cell or simply blast, is a partially differentiated cell, usually referred to as a unipotent cell that has lost most of its stem cell properties. A precursor cell is also known as a pro ...
and astrocytes generated from these cells by being in contact with ciliary neurotrophic factors, failed to promote neuronal survival and support of axonal growth at the spot of the injury. One study done in
Shanghai Shanghai (; , , Standard Mandarin pronunciation: ) is one of the four direct-administered municipalities of the People's Republic of China (PRC). The city is located on the southern estuary of the Yangtze River, with the Huangpu River flow ...
had two types of
hippocampal The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, an ...
neuronal cultures: In one culture, the neuron was grown from a layer of astrocytes and the other culture was not in contact with any astrocytes, but they were instead fed a glial conditioned medium (GCM), which inhibits the rapid growth of cultured astrocytes in the brains of rats in most cases. In their results they were able to see that astrocytes had a direct role in
Long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
with the mixed culture (which is the culture that was grown from a layer of astrocytes) but not in GCM cultures. Studies have shown that astrocytes play an important function in the regulation of neural
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
s. Research from the Schepens Eye Research Institute at
Harvard Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ...
shows the human brain to abound in neural stem cells, which are kept in a dormant state by chemical signals (ephrin-A2 and ephrin-A3) from the astrocytes. The astrocytes are able to activate the stem cells to transform into working neurons by dampening the release of ephrin-A2 and
ephrin-A3 Ephrin A3 is a protein that in humans is encoded by the ''EFNA3'' gene. This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have bee ...
. In a study published in a 2011 issue of ''Nature Biotechnology'' a group of researchers from the University of Wisconsin reports that it has been able to direct embryonic and induced human
stem cells In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
to become astrocytes. A 2012 study of the effects of
marijuana Cannabis, also known as marijuana among other names, is a psychoactive drug from the cannabis plant. Native to Central or South Asia, the cannabis plant has been used as a drug for both recreational and entheogenic purposes and in various tra ...
on short-term memories found that
THC Tetrahydrocannabinol (THC) is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers, the term ''THC' ...
activates CB1 receptors of astrocytes which cause receptors for
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, better known as AMPA, is a compound that is a specific agonist for the AMPA receptor, where it mimics the effects of the neurotransmitter glutamate. There are several types of glutamatergic ...
to be removed from the membranes of associated neurons.


Classification

There are several different ways to classify astrocytes.


Lineage and antigenic phenotype

These have been established by classic work by Raff et al. in early 1980s on Rat optic nerves. * Type 1: Antigenically Ran2+, GFAP+, FGFR3+, A2B5, thus resembling the "type 1 astrocyte" of the postnatal day 7 rat optic nerve. These can arise from the tripotential glial restricted precursor cells (GRP), but not from the bipotential O2A/OPC (oligodendrocyte, type 2 astrocyte precursor, also called ''
Oligodendrocyte progenitor cell Oligodendrocyte progenitor cells (OPCs), also known as oligodendrocyte precursor cells, NG2-glia, O2A cells, or polydendrocytes, are a subtype of glia in the central nervous system named for their essential role as precursors to oligodendrocytes. ...
'') cells. * Type 2: Antigenically A2B5+, GFAP+, FGFR3, Ran 2. These cells can develop ''in vitro'' from the either tripotential GRP (probably via O2A stage) or from bipotential O2A cells (which some people think may in turn have been derived from the GRP) or in vivo when these progenitor cells are transplanted into lesion sites (but ''probably not in normal development, at least not in the rat optic nerve''). Type-2 astrocytes are the major astrocytic component in postnatal optic nerve cultures that are generated by O2A cells grown in the presence of fetal calf serum but are not thought to exist ''in vivo''.


Anatomical classification

*Protoplasmic: found in
grey matter Grey matter is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil (dendrites and unmyelinated axons), glial cells (astrocytes and oligodendrocytes), synapses, and capillaries. Grey matter is distingui ...
and have many branching processes whose end-feet envelop synapses. Some protoplasmic astrocytes are generated by multipotent
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
progenitor cells. *Gömöri-positive astrocytes. These are a subset of protoplasmic astrocytes that contain numerous cytoplasmic inclusions, or granules, that stain positively with Gömöri's chrome-alum hematoxylin stain. It is now known that these granules are formed from the remnants of degenerating mitochondria engulfed within lysosomes, Some type of oxidative stress appears to be responsible for the mitochondrial damage within these specialized astrocytes. Gömöri-positive astrocytes are much more abundant within the
arcuate nucleus The arcuate nucleus of the hypothalamus (also known as ARH, ARC, or infundibular nucleus) is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several ...
of the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamu ...
and in the hippocampus than in other brain regions. They may have a role in regulating the response of the hypothalamus to glucose. *Fibrous: found in
white matter White matter refers to areas of the central nervous system (CNS) that are mainly made up of myelinated axons, also called tracts. Long thought to be passive tissue, white matter affects learning and brain functions, modulating the distribution ...
and have long thin unbranched processes whose end-feet envelop
nodes of Ranvier In neuroscience and anatomy, nodes of Ranvier ( ), also known as myelin-sheath gaps, occur along a myelinated axon where the axolemma is exposed to the extracellular space. Nodes of Ranvier are uninsulated and highly enriched in ion channels, al ...
. Some fibrous astrocytes are generated by
radial glia Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ol ...
.


Transporter/receptor classification

*GluT type: these express
glutamate transporter Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the ex ...
s (
EAAT1 Excitatory amino acid transporter 1 (EAAT1) is a protein that, in humans, is encoded by the ''SLC1A3'' gene. EAAT1 is also often called the GLutamate ASpartate Transporter 1 (GLAST-1). EAAT1 is predominantly expressed in the plasma membrane, al ...
/ and
EAAT2 Excitatory amino acid transporter 2 (EAAT2) also known as solute carrier family 1 member 2 (SLC1A2) and glutamate transporter 1 (GLT-1) is a protein that in humans is encoded by the ''SLC1A2'' gene. Alternatively spliced transcript variants of thi ...
/) and respond to synaptic release of glutamate by transporter currents. The function and availability of EAAT2 is modulated by
TAAR1 Trace amine-associated receptor 1 (TAAR1) is a trace amine-associated receptor (TAAR) protein that in humans is encoded by the ''TAAR1'' gene. TAAR1 is an intracellular amine-activated and G protein-coupled receptor (GPCR) that is primarily ex ...
, an intracellular receptor in human astrocytes. *GluR type: these express
glutamate receptors Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous syste ...
(mostly
mGluR The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate rece ...
and
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, better known as AMPA, is a compound that is a specific agonist for the AMPA receptor, where it mimics the effects of the neurotransmitter glutamate. There are several types of glutamatergic ...
type) and respond to synaptic release of glutamate by channel-mediated currents and IP3-dependent Ca2+ transients.


See also

* Bergmann gliosis * Gemistocyte *
Pituicyte Pituicytes are glial cells of the posterior pituitary. Their main role is to assist in the storage and release of neurohypophysial hormones. Structure Pituicytes are located in the pars nervosa of the posterior pituitary and interspersed with un ...
*
List of human cell types derived from the germ layers This is a list of cells in humans derived from the three embryonic germ layers – ectoderm, mesoderm, and endoderm. Cells derived from ectoderm Surface ectoderm Skin * Trichocyte * Keratinocyte Anterior pituitary * Gonadotrope * Corticotro ...


References


Further reading

* * * * * *


External links


Cell Centered Database – Astrocyte
*
"Astrocytes"
at
Society for Neuroscience The Society for Neuroscience (SfN) is a professional society, headquartered in Washington, DC, for basic scientists and physicians around the world whose research is focused on the study of the brain and nervous system. It is especially well kn ...
* The Department of Neuroscience at
Wikiversity Wikiversity is a Wikimedia Foundation project that supports learning communities, their learning materials, and resulting activities. It differs from Wikipedia in that it offers tutorials and other materials for the fostering of learning, rather ...

NIF Search – Astrocyte
via the
Neuroscience Information Framework The Neuroscience Information Framework is a repository of global neuroscience web resources, including experimental, clinical, and translational neuroscience databases, knowledge bases, atlases, and genetic/ genomic resources and provides many aut ...
{{Authority control Central nervous system Glial cells Human cells