Armand Borel
   HOME

TheInfoList



OR:

Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology, in the theory of
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
s, and was one of the creators of the contemporary theory of linear algebraic groups.


Biography

He studied at the ETH Zürich, where he came under the influence of the topologist
Heinz Hopf Heinz Hopf (19 November 1894 – 3 June 1971) was a German mathematician who worked on the fields of topology and geometry. Early life and education Hopf was born in Gräbschen, Germany (now , part of Wrocław, Poland), the son of Elizabeth ( ...
and Lie-group theorist
Eduard Stiefel Eduard L. Stiefel (21 April 1909 – 25 November 1978) was a Swiss mathematician. Together with Cornelius Lanczos and Magnus Hestenes, he invented the conjugate gradient method, and gave what is now understood to be a partial construction of t ...
. He was in Paris from 1949: he applied the Leray
spectral sequence In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they hav ...
to the topology of Lie groups and their
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
s, under the influence of
Jean Leray Jean Leray (; 7 November 1906 – 10 November 1998) was a French mathematician, who worked on both partial differential equations and algebraic topology. Life and career He was born in Chantenay-sur-Loire (today part of Nantes). He studied at Éc ...
and Henri Cartan. With
Hirzebruch Friedrich Ernst Peter Hirzebruch ForMemRS (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described as ...
, he significantly developed the theory of
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic class ...
es in the early 1950s. He collaborated with
Jacques Tits Jacques Tits () (12 August 1930 – 5 December 2021) was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric. Life and ...
in fundamental work on
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. ...
s, and with
Harish-Chandra Harish-Chandra FRS (11 October 1923 – 16 October 1983) was an Indian American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups. Early life Harish-Chandra wa ...
on their arithmetic subgroups. In an algebraic group ''G'' a ''Borel subgroup'' ''H'' is one minimal with respect to the property that the
homogeneous space In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ...
''G/H'' is a
projective variety In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables ...
. For example, if ''G'' is GL''n'' then we can take ''H'' to be the subgroup of upper triangular matrices. In this case it turns out that H is a maximal
solvable subgroup In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminate ...
, and that the parabolic subgroups ''P'' between ''H'' and ''G'' have a combinatorial structure (in this case the homogeneous spaces ''G/P'' are the various
flag manifold In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a s ...
s). Both those aspects generalize, and play a central role in the theory. The Borel−Moore homology theory applies to general
locally compact space In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
s, and is closely related to
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * ''The Sheaf'', a student-run newspaper s ...
theory. He published a number of books, including a work on the history of Lie groups. In 1978 he received the
Brouwer Medal The Brouwer Medal is a triennial award presented by the Royal Dutch Mathematical Society and the Royal Netherlands Academy of Sciences. The Brouwer Metal gets its name from Dutch mathematician L. E. J. Brouwer and is the Netherlands’ most prestigi ...
and in 1992 he was awarded the
Balzan Prize The International Balzan Prize Foundation awards four annual monetary prizes to people or organizations who have made outstanding achievements in the fields of humanities, natural sciences, culture, as well as for endeavours for peace and the br ...
"For his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favour of high quality in mathematical research and the propagation of new ideas" (motivation of the Balzan General Prize Committee). He was a member of the
American Academy of Arts and Sciences The American Academy of Arts and Sciences (abbreviation: AAA&S) is one of the oldest learned societies in the United States. It was founded in 1780 during the American Revolution by John Adams, John Hancock, James Bowdoin, Andrew Oliver, ...
, the United States
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nat ...
, and the
American Philosophical Society The American Philosophical Society (APS), founded in 1743 in Philadelphia, is a scholarly organization that promotes knowledge in the sciences and humanities through research, professional meetings, publications, library resources, and communi ...
. He died in Princeton. He used to answer the question of whether he was related to
Émile Borel Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biography Borel was ...
alternately by saying he was a nephew, and no relation.


Famous quotations

"I feel that what mathematics needs least are pundits who issue prescriptions or guidelines for presumably less enlightened mortals." (Oeuvres IV, p. 452)


See also

*
Borel–Weil–Bott theorem In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, ...
* Borel cohomology * Borel conjecture * Borel construction *
Borel subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgrou ...
*
Borel subalgebra In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra \mathfrak is a maximal solvable subalgebra. The notion is named after Armand Borel. If the Lie algebra \mathfrak is the Lie algebra of a complex Lie group, ...
*
Borel fixed-point theorem In mathematics, the Borel fixed-point theorem is a fixed-point theorem in algebraic geometry generalizing the Lie–Kolchin theorem. The result was proved by . Statement If ''G'' is a connected, solvable, linear algebraic group acting regula ...
* Borel's theorem *
Borel–de Siebenthal theory In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have ''maximal rank'', i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal ...
*
Borel–Moore homology In topology, Borel−Moore homology or homology with closed support is a homology theory for locally compact spaces, introduced by Armand Borel and John Moore in 1960. For reasonable compact spaces, Borel−Moore homology coincides with the usual ...
* Baily–Borel compactification *
Linear algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n ...
*
Spin structure In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematic ...


Publications

* * * * * * * * * * * * * * *


References


Sources

* * * * *


External links


"Armand Borel"
– obituary on Institute for Advanced Study website *
Mark Goresky, "Armand Borel", Biographical Memoirs of the National Academy of Sciences (2019)
{{DEFAULTSORT:Borel, Armand 1923 births 2003 deaths ETH Zurich alumni Institute for Advanced Study faculty Topologists Algebraic geometers Brouwer Medalists 20th-century Swiss mathematicians Nicolas Bourbaki Members of the French Academy of Sciences Members of the United States National Academy of Sciences Group theorists People from La Chaux-de-Fonds Members of the American Philosophical Society