HOME

TheInfoList



OR:

Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to
isotropy Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
. It can be defined as a difference, when measured along different axes, in a material's physical or
mechanical properties A materials property is an intensive property of a material, i.e., a physical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another ...
(
absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
,
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
,
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution ** Ionic conductivity (solid state), ele ...
,
tensile strength Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials t ...
, etc.). An example of anisotropy is light coming through a polarizer. Another is
wood Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin ...
, which is easier to split along its grain than across it.


Fields of interest


Computer graphics

In the field of
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great de ...
, an anisotropic surface changes in appearance as it rotates about its geometric normal, as is the case with
velvet Weave details visible on a purple-colored velvet fabric Velvet is a type of woven tufted fabric in which the cut threads are evenly distributed, with a short pile, giving it a distinctive soft feel. By extension, the word ''velvety'' means ...
.
Anisotropic filtering In 3D computer graphics, anisotropic filtering (abbreviated AF) is a method of enhancing the image quality of textures on surfaces of computer graphics that are at oblique viewing angles with respect to the camera where the projection of the ...
(AF) is a method of enhancing the image quality of textures on surfaces that are far away and steeply angled with respect to the point of view. Older techniques, such as bilinear and
trilinear filtering Trilinear filtering is an extension of the bilinear texture filtering method, which also performs linear interpolation between mipmaps. Bilinear filtering has several weaknesses that make it an unattractive choice in many cases: using it on a ...
, do not take into account the angle a surface is viewed from, which can result in
aliasing In signal processing and related disciplines, aliasing is an effect that causes different signals to become indistinguishable (or ''aliases'' of one another) when sampled. It also often refers to the distortion or artifact that results when ...
or blurring of textures. By reducing detail in one direction more than another, these effects can be reduced easily.


Chemistry

A chemical anisotropic
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
, as used to filter particles, is a filter with increasingly smaller interstitial spaces in the direction of filtration so that the proximal
region In geography, regions, otherwise referred to as zones, lands or territories, are areas that are broadly divided by physical characteristics ( physical geography), human impact characteristics ( human geography), and the interaction of humanity an ...
s filter out larger particles and distal regions increasingly remove smaller particles, resulting in greater flow-through and more efficient filtration. In
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fie ...
, the orientation of nuclei with respect to the applied magnetic field determines their
chemical shift In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure o ...
. In this context, anisotropic systems refer to the electron distribution of molecules with abnormally high electron density, like the pi system of
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
. This abnormal electron density affects the applied magnetic field and causes the observed chemical shift to change. In
fluorescence spectroscopy Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electro ...
, the fluorescence anisotropy, calculated from the polarization properties of fluorescence from samples excited with plane-polarized light, is used, e.g., to determine the shape of a macromolecule. Anisotropy measurements reveal the average angular displacement of the fluorophore that occurs between absorption and subsequent emission of a photon.


Real-world imagery

Images of a gravity-bound or man-made environment are particularly anisotropic in the orientation domain, with more image structure located at orientations parallel with or orthogonal to the direction of gravity (vertical and horizontal).


Physics

Physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
s from
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
reported about their detection of the cosine anisotropy in
cosmic microwave background radiation In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space ...
in 1977. Their experiment demonstrated the Doppler shift caused by the movement of the earth with respect to the early Universe matter, the source of the radiation. Cosmic anisotropy has also been seen in the alignment of galaxies' rotation axes and polarization angles of quasars. Physicists use the term anisotropy to describe direction-dependent properties of materials.
Magnetic anisotropy In condensed matter physics, magnetic anisotropy describes how an object's magnetic properties can be different depending on direction. In the simplest case, there is no preferential direction for an object's magnetic moment. It will respond ...
, for example, may occur in a plasma, so that its magnetic field is oriented in a preferred direction. Plasmas may also show "filamentation" (such as that seen in
lightning Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions, both in the atmosphere or with one on the ground, temporarily neutralize themselves, causing the instantaneous release of an avera ...
or a
plasma globe A plasma globe or plasma lamp is a clear glass container filled with a mixture of various noble gases with a high-voltage electrode in the center of the container. When voltage is applied, a plasma is formed within the container. Plasma filam ...
) that is directional. An ''anisotropic liquid'' has the fluidity of a normal liquid, but has an average structural order relative to each other along the molecular axis, unlike water or chloroform, which contain no structural ordering of the molecules. Liquid crystals are examples of anisotropic liquids. Some materials conduct heat in a way that is isotropic, that is independent of spatial orientation around the heat source. Heat conduction is more commonly anisotropic, which implies that detailed geometric modeling of typically diverse materials being thermally managed is required. The materials used to transfer and reject heat from the heat source in
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
are often anisotropic. Many
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s are anisotropic to
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
("optical anisotropy"), and exhibit properties such as birefringence.
Crystal optics Crystal optics is the branch of optics that describes the behaviour of light in ''anisotropic media'', that is, media (such as crystals) in which light behaves differently depending on which direction the light is propagating. The index of refract ...
describes light propagation in these media. An "axis of anisotropy" is defined as the axis along which isotropy is broken (or an axis of symmetry, such as normal to crystalline layers). Some materials can have multiple such optical axes.


Geophysics and geology

Seismic anisotropy is the variation of seismic wavespeed with direction. Seismic anisotropy is an indicator of long range order in a material, where features smaller than the seismic
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
(e.g., crystals, cracks, pores, layers, or inclusions) have a dominant alignment. This alignment leads to a directional variation of elasticity wavespeed. Measuring the effects of anisotropy in seismic data can provide important information about processes and mineralogy in the Earth; significant seismic anisotropy has been detected in the Earth's crust, mantle, and
inner core Earth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. There are no samples of Earth's core accessible for d ...
.
Geological Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other E ...
formations with distinct layers of
sedimentary Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
material can exhibit electrical anisotropy; electrical conductivity in one direction (e.g. parallel to a layer), is different from that in another (e.g. perpendicular to a layer). This property is used in the gas and
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth using petroleum geology. Exploration methods Vis ...
industry to identify
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
-bearing sands in sequences of
sand Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class o ...
and shale. Sand-bearing hydrocarbon assets have high
resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
(low conductivity), whereas shales have lower resistivity.
Formation evaluation In petroleum exploration and development, formation evaluation is used to determine the ability of a borehole to produce petroleum. Essentially, it is the process of "recognizing a commercial well when you drill one". Modern rotary drilling usua ...
instruments measure this conductivity or resistivity, and the results are used to help find oil and gas in wells. The mechanical anisotropy measured for some of the sedimentary rocks like coal and shale can change with corresponding changes in their surface properties like sorption when gases are produced from the coal and shale reservoirs. The
hydraulic conductivity Hydraulic conductivity, symbolically represented as (unit: m/s), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fractures network. It depends on ...
of
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteris ...
s is often anisotropic for the same reason. When calculating groundwater flow to drains or to wells, the difference between horizontal and vertical permeability must be taken into account; otherwise the results may be subject to error. Most common rock-forming
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
s are anisotropic, including
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
and
feldspar Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagioclase'' (sodium-calcium) felds ...
. Anisotropy in minerals is most reliably seen in their
optical properties The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics, a subfield of optics. The optical properties of matter include: *Refractive index * Dispersion *Transmittance a ...
. An example of an isotropic mineral is
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. All species of garnets possess similar physical properties and crystal forms, but differ in chemical composition. The different s ...
.


Medical acoustics

Anisotropy is also a well-known property in medical ultrasound imaging describing a different resulting
echogenicity Echogenicity (misspelled sometimes as echogenecity) or echogeneity is the ability to bounce an echo, e.g. return the signal in ultrasound examinations. In other words, echogenicity is higher when the surface bouncing the sound echo reflects incre ...
of soft tissues, such as tendons, when the angle of the transducer is changed. Tendon fibers appear hyperechoic (bright) when the transducer is perpendicular to the tendon, but can appear hypoechoic (darker) when the transducer is angled obliquely. This can be a source of interpretation error for inexperienced practitioners.


Materials science and engineering

Anisotropy, in materials science, is a material's directional dependence of a physical property. This is a critical consideration for materials selection in engineering applications. A material with physical properties that are symmetric about an axis that is normal to a plane of isotropy is called a transversely isotropic material.
Tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensor ...
descriptions of material properties can be used to determine the directional dependence of that property. For a
monocrystalline In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries.RIWD. "Re ...
material, anisotropy is associated with the crystal symmetry in the sense that more symmetric crystal types have fewer independent coefficients in the tensor description of a given property. When a material is
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
, the directional dependence on properties is often related to the processing techniques it has undergone. A material with randomly oriented grains will be isotropic, whereas materials with
texture Texture may refer to: Science and technology * Surface texture, the texture means smoothness, roughness, or bumpiness of the surface of an object * Texture (roads), road surface characteristics with waves shorter than road roughness * Texture ...
will be often be anisotropic. Textured materials are often the result of processing techniques like hot rolling,
wire drawing Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through a single, or series of, drawing die(s). There are many applications for wire drawing, including electrical wiring, cables, tension-loa ...
, and
heat treatment Heat treating (or heat treatment) is a group of industrial process, industrial, thermal and metalworking, metalworking processes used to alter the physical property, physical, and sometimes chemical property, chemical, properties of a material. ...
. Mechanical properties of materials such as
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied le ...
,
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
,
yield strength In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and ...
, and high temperature creep rate, are often dependent on the direction of measurement. Fourth rank
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensor ...
properties, like the elastic constants, are anisotropic, even for materials with cubic symmetry. The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material, stiffness (or compliance) tensors are used instead. In metals, anisotropic elasticity behavior is present in all single crystals with three independent coefficients for cubic crystals, for example. For face-centered cubic materials such as Nickel and Copper, the stiffness is highest along the <111> direction, normal to the close packed planes, and smallest parallel to <100>. Tungsten is so nearly isotropic at room temperature that it can be considered to have only two stiffness coefficients; aluminium is another metal that is nearly isotropic. For an isotropic material, G = E/ (1 + \nu) where G is the
shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: :G \ \stackre ...
, E is the
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied le ...
, and \nu is the material's
Poisson's ratio In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Po ...
. Therefore, for cubic materials, we can think of anisotropy, a_r , as the ratio between the empirically determined shear modulus for the cubic material and its (isotropic) equivalent: a_r = \frac = \frac \equiv \frac. The latter expression is known as the
Zener ratio The Zener ratio is a dimensionless number that is used to quantify the anisotropy for Cubic crystal system, cubic crystals. It is sometimes referred as ''anisotropy ratio'' and is named after Clarence Zener. Conceptually, it quantifies how far a mat ...
, a_r , where C_ refers to elastic constants in Voigt (vector-matrix) notation. For an isotropic material, the ratio is one. Limitation of the
Zener ratio The Zener ratio is a dimensionless number that is used to quantify the anisotropy for Cubic crystal system, cubic crystals. It is sometimes referred as ''anisotropy ratio'' and is named after Clarence Zener. Conceptually, it quantifies how far a mat ...
to cubic materials is waived in the Tensorial anisotropy index AT that takes into consideration all the 27 components of the fully anisotropic stiffness tensor. It is composed of two major parts A^Iand A^A , the former referring to components existing in cubic tensor and the latter in anisotropic tensor so that A^T = A^I+A^A . This first component includes the modified Zener ratio and additionally accounts for directional differences in the material, which exist in orthotropic material, for instance. The second component of this index A^A covers the influence of stiffness coefficients that are nonzero only for non-cubic materials and remains zero otherwise. Fiber-reinforced or layered
composite material A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or ...
s exhibit anisotropic mechanical properties, due to orientation of the reinforcement material. In many fiber-reinforced composites like carbon fiber or glass fiber based composites, the weave of the material (e.g. unidirectional or plain weave) can determine the extent of the anisotropy of the bulk material. The tunability of orientation of the fibers, allows for application-based designs of composite materials, depending on the direction of stresses applied onto the material. Amorphous materials such as glass and polymers are typically isotropic. Due to the highly randomized orientation of macromolecules in polymeric materials,
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s are in general described as isotropic. However, mechanically gradient polymers can be engineered to have directionally dependent properties through processing techniques or introduction of anisotropy-inducing elements. Researchers have built composite materials with aligned fibers and voids to generate anisotropic hydrogels, in order to mimic hierarchically ordered biological soft matter. 3D printing, especially Fused Deposition Modeling, can introduce anisotropy into printed parts. This is due to the fact that FDM is designed to extrude and print layers of thermoplastic materials. This creates materials that are strong when tensile stress is applied in parallel to the layers and weak when the material is perpendicular to the layers.


Microfabrication

Anisotropic etching techniques (such as deep reactive-ion etching) are used in
microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" ...
processes to create well defined microscopic features with a high aspect ratio. These features are commonly used in
MEMS Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems (or microelectronic and microelectromechanical systems) and the related micromechatronics and microsystems constitute the technology of microscopic devices, ...
and
microfluidic Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter) at which surface forces dominate volumetric forces. It is a multidisciplinary field tha ...
devices, where the anisotropy of the features is needed to impart desired optical, electrical, or physical properties to the device. Anisotropic etching can also refer to certain chemical etchants used to etch a certain material preferentially over certain crystallographic planes (e.g., KOH etching of
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
00produces pyramid-like structures)


Neuroscience

Diffusion tensor imaging is an
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
technique that involves measuring the fractional anisotropy of the random motion (
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
) of water molecules in the brain. Water molecules located in fiber tracts are more likely to be anisotropic, since they are restricted in their movement (they move more in the dimension parallel to the fiber tract rather than in the two dimensions orthogonal to it), whereas water molecules dispersed in the rest of the brain have less restricted movement and therefore display more isotropy. This difference in fractional anisotropy is exploited to create a map of the fiber tracts in the brains of the individual.


Remote sensing and radiative transfer modeling

Radiance In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiati ...
fields (see
Bidirectional reflectance distribution function The bidirectional reflectance distribution function (BRDF; f_(\omega_,\, \omega_) ) is a function of four real variables that defines how light is reflected at an opaque surface. It is employed in the optics of real-world light, in compute ...
(BRDF)) from a reflective surface are often not isotropic in nature. This makes calculations of the total energy being reflected from any scene a difficult quantity to calculate. In
remote sensing Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Eart ...
applications, anisotropy functions can be derived for specific scenes, immensely simplifying the calculation of the net reflectance or (thereby) the net irradiance of a scene. For example, let the
BRDF The bidirectional reflectance distribution function (BRDF; f_(\omega_,\, \omega_) ) is a function of four real variables that defines how light is reflected at an opaque surface. It is employed in the optics of real-world light, in compute ...
be \gamma(\Omega_i, \Omega_v) where 'i' denotes incident direction and 'v' denotes viewing direction (as if from a satellite or other instrument). And let P be the Planar Albedo, which represents the total reflectance from the scene. P(\Omega_i) = \int_ \gamma(\Omega_i, \Omega_v)\hat \cdot d\hat\Omega_v A(\Omega_i, \Omega_v) = \frac It is of interest because, with knowledge of the anisotropy function as defined, a measurement of the
BRDF The bidirectional reflectance distribution function (BRDF; f_(\omega_,\, \omega_) ) is a function of four real variables that defines how light is reflected at an opaque surface. It is employed in the optics of real-world light, in compute ...
from a single viewing direction (say, \Omega_v) yields a measure of the total scene reflectance (Planar Albedo) for that specific incident geometry (say, \Omega_i).


See also

* Circular symmetry * *


References


External links


"Overview of Anisotropy"

DoITPoMS Teaching and Learning Package: "Introduction to Anisotropy"


{{Authority control Orientation (geometry) Asymmetry