In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an integral domain is a
nonzero commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
in which
the product of any two nonzero elements is nonzero. Integral domains are generalizations of the
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
of
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s and provide a natural setting for studying
divisibility
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a ''Multiple (mathematics), multiple'' of m. An integer n is divis ...
. In an integral domain, every nonzero element ''a'' has the
cancellation property
In mathematics, the notion of cancellativity (or ''cancellability'') is a generalization of the notion of invertibility.
An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M ...
, that is, if , an equality implies .
"Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using "
domain" for the general case including noncommutative rings.
Some sources, notably
Lang
Lang may refer to:
*Lang (surname), a surname of independent Germanic or Chinese origin
Places
* Lang Island (Antarctica), East Antarctica
* Lang Nunatak, Antarctica
* Lang Sound, Antarctica
* Lang Park, a stadium in Brisbane, Australia
* Lang, ...
, use the term entire ring for integral domain.
Some specific kinds of integral domains are given with the following chain of
class inclusions:
Definition
An ''integral domain'' is a
nonzero commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
in which the product of any two nonzero elements is nonzero. Equivalently:
* An integral domain is a nonzero commutative ring with no nonzero
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
s.
* An integral domain is a commutative ring in which the
zero ideal
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.
Additive identities
An '' additive id ...
is a
prime ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
.
* An integral domain is a nonzero commutative ring for which every nonzero element is
cancellable under multiplication.
* An integral domain is a ring for which the set of nonzero elements is a commutative
monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
under multiplication (because a monoid must be
closed under multiplication).
* An integral domain is a nonzero commutative ring in which for every nonzero element ''r'', the function that maps each element ''x'' of the ring to the product ''xr'' is
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
. Elements ''r'' with this property are called ''regular'', so it is equivalent to require that every nonzero element of the ring be regular.
* An integral domain is a ring that is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a
subring
In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of a
field. (Given an integral domain, one can embed it in its
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
.)
Examples
* The archetypical example is the ring
of all
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s.
* Every
field is an integral domain. For example, the field
of all
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is an integral domain. Conversely, every
Artinian integral domain is a field. In particular, all finite integral domains are
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s (more generally, by
Wedderburn's little theorem
In mathematics, Wedderburn's little theorem states that every finite division ring is a field; thus, every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields.
The Art ...
, finite
domains are
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s). The ring of integers
provides an example of a non-Artinian infinite integral domain that is not a field, possessing infinite descending sequences of ideals such as:
*:
* Rings of
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s are integral domains if the coefficients come from an integral domain. For instance, the ring