Bibliography
* ** *Actes de la Table Ronde de Géométrie Différentielle. roceedings of the Roundtable on Differential GeometryEn l'honneur de Marcel Berger. n honor of Marcel BergerHeld in Luminy, July 12–18, 1992. Edited by Arthur L. Besse. Séminaires et Congrès eminars and Congresses 1. Société Mathématique de France, Paris; distributed by American Mathematical Society, Providence, RI, 1996. *Besse, Arthur L.: Some trends in Riemannian geometry. Duration and change, 71–105, Springer, Berlin, 1994 . *Besse, A. Многообразия Эйнштейна. Том I,II. (Russian) instein manifolds. Vol. I, IITranslated from the English and with a preface by D. V. Alekseevskiĭ. "Mir", Moscow, 1990. Vol. I: 320 pp.; Vol. II: pp. 321–704. *Besse, Arthur L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) esults in Mathematics and Related Areas (3) 10. Springer-Verlag, Berlin, 1987 . *Четырехмерная риманова геометрия. (Russian) iemannian geometry in dimension 4Семинар Артура Бессе 1978/79. he Arthur Besse seminar 1978/79Translated from the French by G. B. Shabat. Translation edited by A. N. Tyurin. "Mir", Moscow, 1985. *Géométrie riemannienne en dimension 4. (French) iemannian geometry in dimension 4Papers from the Arthur Besse seminar held at the Université de Paris VII, Paris, 1978/1979. Edited by Lionel Bérard-Bergery, Marcel Berger and Christian Houzel. Textes Mathématiques athematical Texts 3. CEDIC, Paris, 1981. *Besse, Arthur L. Многообразия с замкнутыми геодезическими. (Russian) anifolds all of whose geodesics are closedTranslated from the English by Yu. S. Osipov, I. D. Novikov and Yu. P. Solovʹev. Edited and with a preface by Vladimir Mikhaĭlovich Alekseev. "Mir", Moscow, 1981. *Besse, Arthur L. Manifolds all of whose geodesics are closed. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. Ergebnisse der Mathematik und ihrer Grenzgebiete esults in Mathematics and Related Areas 93. Springer-Verlag, Berlin-New York, 1978, .See also
* Nicolas Bourbaki *