Anomalous X-ray scattering (AXRS or XRAS) is a non-destructive determination technique within
X-ray diffraction
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
that makes use of the
anomalous dispersion
In optics, and by analogy other branches of physics dealing with wave propagation, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; sometimes the term chromatic dispersion is used for specificity to o ...
that occurs when a wavelength is selected that is in the vicinity of an absorption edge of one of the constituent elements of the sample. It is used in materials research to study nanometer sized differences in structure.
Atomic scattering factors
In X-ray diffraction the scattering factor ''f'' for an atom is roughly proportional to the number of electrons that it possesses. However, for wavelengths that approximate those for which the atom strongly absorbs radiation the scattering factor undergoes a change due to anomalous dispersion. The dispersion not only affects the magnitude of the factor but also imparts a phase shift in the elastic collision of the photon. The scattering factor can therefore best be described as a complex number
: f= f
o + Δf' + i.Δf"
Contrast variation
The anomalous aspects of X-ray scattering have become the focus of considerable interest in the scientific community because of the availability of
synchrotron radiation
Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
. In contrast to desktop X-ray sources that work at a limited set of fixed wavelengths, synchrotron radiation is generated by accelerating electrons and using an undulator (device of periodic placed dipole magnets) to "wiggle" the electrons in their path, to generate the wanted wavelength of X-rays. This allows scientists to vary the wavelength, which in turn makes it possible to vary the scattering factor for one particular element in the sample under investigation. Thus a particular element can be highlighted. This is known as ''contrast variation''. In addition to this effect the anomalous scatter is more sensitive to any deviation from sphericity of the electron cloud around the atom. This can lead to resonant effects involving transitions in the outer shell of the atom:
resonant anomalous X-ray scattering
X-ray scattering techniques are a family of non-destructive analytical techniques which reveal information about the crystal structure, chemical composition, and physical properties of materials and thin films. These techniques are based on observ ...
.
Protein crystallography
In protein crystallography, anomalous scattering refers to a change in a diffracting X-ray's phase that is unique from the rest of the atoms in a crystal due to strong X-ray absorbance. The amount of energy that individual atoms absorb depends on their atomic number. The relatively light atoms found in proteins such as carbon, nitrogen, and oxygen do not contribute to anomalous scattering at normal X-ray wavelengths used for X-ray crystallography.
[Rhodes, G. (2000). ''Crystallography made crystal clear (2nd ed.).'' San Diego: Academic Press.] Thus, in order to observe anomalous scattering, a heavy atom must be native to the protein or a heavy atom derivative should be made. In addition, the X-ray's wavelength should be close to the heavy atom's absorption edge.
Anomalous Dispersion
*
Multi-wavelength anomalous dispersion Multi-wavelength anomalous diffraction (sometimes Multi-wavelength anomalous dispersion; abbreviated MAD) is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules ...
(MAD)
*
Single wavelength anomalous dispersion Single-wavelength anomalous diffraction (SAD) is a technique used in X-ray crystallography that facilitates the determination of the structure of proteins or other biological macromolecules by allowing the solution of the phase problem. In contrast ...
(SAD)
References
Scientific techniques
X-ray crystallography