Ambisonic Data Exchange Formats
   HOME

TheInfoList



OR:

Data exchange formats for
Ambisonics Ambisonics is a ''full-sphere'' surround sound format: in addition to the horizontal plane, it covers sound sources above and below the listener. Unlike some other multichannel surround formats, its transmission channels do not carry speaker si ...
have undergone radical changes since the early days of four-track magnetic tape. Researchers working on very high-order systems found no straightforward way to extend the traditional formats to suit their needs. Furthermore, there was no widely accepted formulation of
spherical harmonics In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a ...
for acoustics, so one was borrowed from chemistry, quantum mechanics, computer graphics, or other fields, each of which had subtly different conventions. This led to an unfortunate proliferation of mutually incompatible ad hoc formats and much head-scratching. This page attempts to document the different existing formats, their rationales and history, for the terminally curious and those unfortunate enough to have to deal with them in detail. Most modern applications use ACN and SN3D, although ''traditional'' first order is still common.


Spherical harmonics in Ambisonics

A common formulation for spherical harmonics in the context of Ambisonics is : Y_\ell^m (\theta, \phi) = N_\ell^ P_\ell^(\sin\phi)\cdot\begin & \mbox m < 0, \\ & \mbox m\ge 0, \end where Y denotes a spherical harmonic of degree \ell and index m with a range of -\ell \leq m \leq +\ell. (Note that if m=0, then \cos m\theta = \cos 0 = 1.) N is a normalisation factor (see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
), and P_\ell^m is the
associated Legendre polynomial In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation \left(1 - x^2\right) \frac P_\ell^m(x) - 2 x \frac P_\ell^m(x) + \left \ell (\ell + 1) - \frac \rightP_\ell^m(x) = 0, or equivalently ...
of degree \ell and order m. The azimuth angle \theta is zero straight ahead and increases counter-clockwise. The elevation angle \phi is zero on the horizontal plane and positive in the upper hemisphere. Unfortunately, the "Ambisonic order" \ell is called the ''degree'' in mathematical parlance, which uses ''order'' for the "Ambisonic index" m.


Relationship of spherical harmonics and B-format signals

For a source signal S in direction (\theta,\phi), the Ambisonic components B_\ell^m are given by :B_\ell^m = Y_\ell^m (\theta, \phi) \cdot S. If we span a direction vector from the origin towards the source until it intersects the respective spherical harmonic, the length of this vector is the coefficient that gets multiplied with the source signal. Repeat for all spherical harmonics up to the desired Ambisonic order.


Prerequisites for successful data exchange

For successful exchange of Ambisonic material, some software requires the sender and receiver have to agree on the ''ordering'' of the components, their ''normalisation'' or ''weighting'', and the relative ''polarity'' of the harmonics. Since it is possible to omit parts of the spherical harmonic multipole expansion for content that has non-uniform, direction-dependent resolution (known as '' mixed-order''), it might also be necessary to define how to deal with ''missing components''. In the case of transmission "by wire", be it an actual digital multichannel link or any number of virtual patchcords within an audio processing engine, these properties must be explicitly matched on both ends, since there is usually no provision for metadata exchange and parameter negotiation. In the case of files, some flexibility might be possible, depending on the file format and the expressiveness of its metadata set. However, in practice, just two formats are in widespread use. The first is ''Furse-Malham higher-order format'', which is an extension of ''traditional B-Format'', and the more modern ''SN3D'', in ''ACN'' channel order. In neither case is there any ambiguity about ordering, normalisation, weighting or polarity and it is rare to see cases with missing components. A third format is in limited use: ''N3D'', also in ACN channel order.


Component ordering

The ''traditional B-format'' (WXYZ) only concerned itself with zeroth and first Ambisonic order. Because of a strong correspondence between the spherical harmonics and microphone polar patterns, and the fact that those polar patterns have clearly defined directions, it seemed natural to order and name the components in the same way as the axes of a right-hand coordinate system. For higher orders, this precedent becomes awkward, because spherical harmonics are most intuitively arranged in symmetric fashion around the single z-rotationally symmetric member ''m=0'' of each order, with the horizontal sine terms ''m<0'' to the left, and the cosine terms ''m>0'' to the right (see illustration).


Furse-Malham

In ''Furse-Malham higher-order format'', an extension of traditional B-format up to third order, orders 2 (RSTUV) and 3 (KLMNOPQ) begin with their z-rotationally symmetric member and then jump outward right and left (see table), with the horizontal components at the end. Higher-order extensions are trivially defined, but are not used.


SID

In his seminal 2001 thesis, Daniel used a three-index nomenclature Y_^\sigma for the spherical harmonics, which corresponds to Y_^ in the notation used here.sgn(x) is the
Sign function In mathematics, the sign function or signum function (from '' signum'', Latin for "sign") is an odd mathematical function that extracts the sign of a real number. In mathematical expressions the sign function is often represented as . To avoi ...
.
He implied yet another channel ordering, subsequently developed into an explicit proposal called ''SID'' for ''Single Index Designation'' which was adopted by a number of researchers. This scheme is compatible with first-order B-format, and continues to traverse the higher spherical harmonics in the same fashion, with the z-rotationally symmetric component at the end, going through the horizontal components first. It is, however, incompatible with Furse-Malham. SID ordering is not in widespread use.


ACN

For future higher-order systems, adoption of the ''Ambisonic Channel Number (ACN)''Michael Chapman et al.,
A standard for interchange of Ambisonic signal sets
', Ambisonics Symposium, Graz 2009
has reached wide consensus. It is determined algorithmically as ACN = \ell^2 + \ell + m. ACN is used widely with SN3D and N3D, below.


Normalisation

For successful reconstruction of the sound field, it is important to agree on a normalisation method for the spherical harmonic components. The following approaches are common:


maxN

The maxN scheme by Daniel normalizes each single component to never exceed a gain of 1.0 for a panned monophonic source. Malham states that ''" ilst this approach is not rigorously "correct" in mathematical terms, it has significant engineering advantages in that it restricts the maximum levels a panned mono source will generate in some of the higher-order channels."'' This property is particularly interesting for fixed-point digital interfaces. The maxN weights may be determined by visual inspection up to the third order; above this value the maxima of each polynomial need to be determined explicitly. MaxN is used in the Furse-Malham format (with the exception of a -3dB correction factor for W, which makes it directly compatible with traditional B-Format). Otherwise, it is not in widespread use.


SN3D

SN3D stands for Schmidt semi-normalisation and is commonly used in geology and magnetics. The weighting coefficients are : N_^\text = \sqrt, \delta_m \begin 1 & \mboxm=0 \\ 0 & \mboxm\neq0 \end. Originally introduced into Ambisonic use by Daniel, he notes: ''"High degree of generality - the encoding coefficients are recursively computable, and the first-order components are unity vectors in their respective directions of incidence"''. With SN3D, unlike
N3D n3D was an American 3DTV channel that launched on July 1, 2010. It was sponsored by Panasonic and available exclusively on DirecTV. It was the world's first 24-hour 3DTV channel. Operations ceased June 25, 2012. Programs Programming that has ai ...
, no component will ever exceed the peak value of the 0th order component for single point sources. This scheme has been adopted by the proposed
AmbiX ''Ambix'' is a peer-reviewed academic journal on the history of alchemy and chemistry; it was founded in 1936 and has appeared continuously from 1937 to the present, other than from 1939 to 1945 during World War II. It is currently published by the ...
format. SN3D (in the ACN channel order) is in widespread use and a common choice in new software development. In the Ambix specification paper the 2 minus delta m is divided by 4pi.


N3D

N3D or full three-D normalisation is the most obvious approach to normalisation. Daniel describes it as follows: ''"
Orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
for 3D decomposition. Simple relationship to SN3D . Ensures equal power of the encoded components in the case of a perfectly diffuse 3D field. .Obvious significance for solving decoding problems .(3D reconstruction)."'' The relation to SN3D is : N_^\text = N_^\text\sqrt. This normalisation is standard in Physics and Mathematics and is supported by some Ambisonic software packages. It is used in MPEG-H. However, SN3D is now much more common. As N3D and SN3D differ only by scaling factors, care is needed when working with both, as it may not be obvious on first listening if an error has been made, particularly on a system with a small number of speakers.


N2D / SN2D

Additionally, two schemes exist which consider only the horizontal components. This has practical advantages for fixed-point media in the common situation where sources are concentrated on the horizontal plane, but the normalisation is somewhat arbitrary and its assumptions do not hold for strongly diffuse soundfields and sound scenes with strong elevated sources. Since Ambisonics is meant to be
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
and the 2D schemes definitely are not, their use is discouraged.


Polarity

A third complication arises from the quantum mechanical formulation of spherical harmonics, which was adopted by some Ambisonics researchers. It includes a factor of (-1)^m, a convention called '' Condon-Shortley phase'', which will invert the relative ''polarity'' of every other component within a given Ambisonic order. The term can be folded both into the formulation of the associated Legendre polynomials or the normalisation coefficient, so it may not always be obvious.
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation ...
and
GNU Octave GNU Octave is a high-level programming language primarily intended for scientific computing and numerical computation. Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a langu ...
both include Condon-Shortley phase in its legendre(\ell,X) functions, but undo it by applying the factor again in the Schmidt semi-normalized form legendre(\ell,X,'sch').
Wolfram Language The Wolfram Language ( ) is a general multi-paradigm programming language developed by Wolfram Research. It emphasizes symbolic computation, functional programming, and rule-based programming and can employ arbitrary structures and data. It is ...
also includes C-S phase in its legendreP(\ell,X) implementation, and retains it in SphericalHarmonicY math>\ell,m,\theta,\phi/code>, which is fully normalized. Note that this function returns complex values and uses the physics convention for spherical coordinates where \theta is the zenith angle (angle from the positive Z-axis) and \phi is the azimuth (counter-clockwise angle around the positive Z-axis). The presence of Condon-Shortley phase in parts of the signal chain usually manifests itself in erratic panning behaviour and increasing apparent source width when going to higher orders, which can be somewhat difficult to diagnose and much harder to eliminate. Hence, its use is'' strongly discouraged ''in the context of Ambisonics. None of the ambisonic exchange formats described above use Condon-Shortley phase. Polarity is generally only a concern when trying to reconcile theoretical formulations of the spherical harmonics from other academic disciplines.


Reference table of layouts and normalisations

The following table gives an overview of all Ambisonic formats published so far. * For Furse-Malham (and traditional B-format), sort by FuMa column and multiply the spherical harmonic by the maxN*MaxN* (starred) denotes maxN normalisation with the additional -3dB correction factor for W. factor. * For SID according to Daniel, sort by SID and apply the relevant normalisation factor as specified in the file metadata. * For basic AmbiX, sort by ACN and use the SN3D factor. * For extended AmbiX and all other combinations, good luck! Conversion factors can be applied either to the Ambisonic components B or the spherical harmonics Y. The data is taken from Chapman (2008). ''Please do not rely on this table until it has been thoroughly checked and the "Under construction" notice has been removed.'' However, please note that only the Furse-Malham and SN3D/ACN encodings are in wide use. (Traditional B-Format is a subset of Furse-Malham.) For both of these encodings, the equations can be expressed directly, without separate normalisation or conversion factors, and there is no ambiguity around ordering.


File formats and metadata

For file-based storage and transmission, additional properties need to be defined, such as the base file format and, if desired, accompanying metadata.


AMB

The .amb file format was proposed and defined by Richard Dobson in 2001,Richard Dobso
''The AMB Ambisonic File Format''
based on Microsoft'
WAVE_FORMAT_EXTENSIBLE
amendment to the
WAV Waveform Audio File Format (WAVE, or WAV due to its filename extension; pronounced "wave") is an audio file format standard, developed by IBM and Microsoft, for storing an audio bitstream on PCs. It is the main format used on Microsoft Wind ...
audio file format. It mandates the use of Furse-Malham encoding. From its parent, it inherits a maximum file size of 4GB, which is a serious limitation for live recording in higher orders. .amb Files are distinguished from other multichannel content by their suffix and by setting the file subtype
Globally Unique Identifier A universally unique identifier (UUID) is a 128-bit label used for information in computer systems. The term globally unique identifier (GUID) is also used. When generated according to the standard methods, UUIDs are, for practical purposes, un ...
in their header data to either of the following values: * SUBTYPE_AMBISONIC_B_FORMAT_PCM for integer samples, or * SUBTYPE_AMBISONIC_B_FORMAT_IEEE_FLOAT for floating point. The definition mandates that the WAVE_EX dwChannelMask must be set to zero. Furthermore, it recommends that the file should contain a PEAK chunk, containing the value and position of the highest sample in each channel. The channels within an .amb file are interleaved, and any unused channels are omitted. This makes it possible to identify traditional #H#P mixed-order content by the number of channels present, as per the following table: The
free and open source Free and open-source software (FOSS) is a term used to refer to groups of software consisting of both free software and open-source software where anyone is freely licensed to use, copy, study, and change the software in any way, and the source ...
C library
libsndfile libsndfile is a widely used C library written by Erik de Castro Lopo for reading and writing audio files. It supports a wide variety of audio file formats and will convert automatically from one to another. It allows the programmer to ignore m ...
has included .amb support since 2007. Dobson's format has been instrumental in making native Ambisonic content easily accessible to enthusiasts, and to pave the way for research and deployment of Higher-order Ambisonics. While it cannot scale any further than third order and does not accommodate #H#V mixed order sets, its capabilities are more than sufficient for most Ambisonic content in existence today, and backwards-compatibility to .amb is an important feature of any real-world Ambisonic workflow.


AmbiX

AmbiX adopts Apple's Core Audio Format or .caf. It scales to arbitrarily high orders and has no practically relevant limitation of file size. AmbiX files contain linear PCM data with word lengths of 16, 24, or 32 bit fixed point, or 32 or 64 bit float, at any sample rate valid for .caf. It uses ACN channel ordering with SN3D normalisation. The ''basic format'' of AmbiX mandates a complete full-sphere signal set, the order of which can be uniquely and trivially deduced from the number of channels. Only the minimum header information required by the .caf specification are present and no other metadata is included. The ''extended format'' is marked by the presence of a User-Defined Chunk with the
UUID A universally unique identifier (UUID) is a 128-bit label used for information in computer systems. The term globally unique identifier (GUID) is also used. When generated according to the standard methods, UUIDs are, for practical purposes, uni ...
:1AD318C3-00E5-5576-BE2D-0DCA2460BC89. (The original specifications used , which is an invalid UUID ). Additionally, the header now contains an ''adaptor matrix'' of coefficients, which needs to be applied to the data streams before they can be played back. This matrix provides a generic way of mapping payloads in any previous format and any mix of orders to canonical periphony, ACN ordering and SN3D normalisation. Theoretically, it can even accommodate sound fields that span only subsets of the sphere. AmbiX was originally proposed at the Ambisonic Symposium 2011, building upon previous work by TravisTravis, Chris
''A new mixed-order scheme for Ambisonic signals''
, Ambisonics Symposium, Graz 2009
and Chapman et al.


Notes


References

{{reflist


External links


Notes on Basic Ideas of Spherical Harmonics
an introductory text by Robert E. Greene Data exchange formats