Aluminum Sculptures In Utah
   HOME

TheInfoList



OR:

Aluminium (aluminum in
American American(s) may refer to: * American, something of, from, or related to the United States of America, commonly known as the "United States" or "America" ** Americans, citizens and nationals of the United States of America ** American ancestry, pe ...
and
Canadian English Canadian English (CanE, CE, en-CA) encompasses the varieties of English native to Canada. According to the 2016 census, English was the first language of 19.4 million Canadians or 58.1% of the total population; the remainder spoke French ( ...
) is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
 Al and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
 13. Aluminium has a density lower than those of other common
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s, at approximately one third that of
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
. It has a great affinity towards
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
, and forms a protective layer of
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft,
non-magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
and
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
. It has one stable isotope, 27Al; this isotope is very common, making aluminium the twelfth most common element in the Universe. The radioactivity of 26Al is used in
radiodating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
. Chemically, aluminium is a
post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
in the
boron group The boron group are the chemical elements in group 13 of the periodic table, comprising boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl), and nihonium (Nh). The elements in the boron group are characterized by having three vale ...
; as is common for the group, aluminium forms compounds primarily in the +3
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. The aluminium
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
Al3+ is small and highly charged; as such, it is polarizing, and bonds aluminium forms tend towards
covalency A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
. The strong affinity towards oxygen leads to aluminium's common association with oxygen in nature in the form of oxides; for this reason, aluminium is found on Earth primarily in rocks in the crust, where it is the third most abundant element after
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
, rather than in the mantle, and virtually never as the free metal. The discovery of aluminium was announced in 1825 by Danish physicist
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricity ...
. The first industrial production of aluminium was initiated by French chemist
Henri Étienne Sainte-Claire Deville Henri Étienne Sainte-Claire Deville (11 March 18181 July 1881) was a French chemist. He was born in the island of St Thomas in the Danish West Indies, where his father was French consul. Together with his elder brother Charles he was educated ...
in 1856. Aluminium became much more available to the public with the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
developed independently by French engineer
Paul Héroult Paul (Louis-Toussaint) Héroult (10 April 1863 – 9 May 1914) was a French scientist. He was the inventor of the aluminium electrolysis and developed the first successful commercial electric arc furnace. He lived in Thury-Harcourt, Normandy. ...
and American engineer
Charles Martin Hall Charles Martin Hall (December 6, 1863 – December 27, 1914) was an American inventor, businessman, and chemist. He is best known for his invention in 1886 of an inexpensive method for producing aluminum, which became the first metal to atta ...
in 1886, and the mass production of aluminium led to its extensive use in industry and everyday life. In World Wars I and II, aluminium was a crucial
strategic resource In economics, factors of production, resources, or inputs are what is used in the production process to produce output—that is, goods and services. The utilized amounts of the various inputs determine the quantity of output according to the relat ...
for
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as hot air ...
. In 1954, aluminium became the most produced
non-ferrous metal In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable proper ...
, surpassing
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
. In the 21st century, most aluminium was consumed in transportation, engineering, construction, and packaging in the United States, Western Europe, and Japan. Despite its prevalence in the environment, no living organism is known to use aluminium
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively cha ...
metabolically Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
, but aluminium is well tolerated by plants and animals. Because of the abundance of these salts, the potential for a biological role for them is of interest, and studies continue.


Physical characteristics


Isotopes

Of aluminium isotopes, only is stable. This situation is common for elements with an odd atomic number. It is the only primordial aluminium isotope, i.e. the only one that has existed on Earth in its current form since the formation of the planet. Nearly all aluminium on Earth is present as this isotope, which makes it a
mononuclidic element A mononuclidic element or monotopic element is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic m ...
and means that its
standard atomic weight The standard atomic weight of a chemical element (symbol ''A''r°(E) for element "E") is the weighted arithmetic mean of the relative isotopic masses of all isotopes of that element weighted by each isotope's abundance on Earth. For example, is ...
is virtually the same as that of the isotope. This makes aluminium very useful in
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR), as its single stable isotope has a high NMR sensitivity. The standard atomic weight of aluminium is low in comparison with many other metals. All other isotopes of aluminium are
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
. The most stable of these is 26Al: while it was present along with stable 27Al in the interstellar medium from which the Solar System formed, having been produced by
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
as well, its
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
is only 717,000 years and therefore a detectable amount has not survived since the formation of the planet. However, minute traces of 26Al are produced from
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
in the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
by
spallation Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary p ...
caused by
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
protons. The ratio of 26Al to 10Be has been used for
radiodating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
of geological processes over 105 to 106 year time scales, in particular transport, deposition,
sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand an ...
storage, burial times, and erosion. Most meteorite scientists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some
asteroids An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
after their formation 4.55 billion years ago. The remaining isotopes of aluminium, with
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
s ranging from 22 to 43, all have half-lives well under an hour. Three
metastable In chemistry and physics, metastability denotes an intermediate Energy level, energetic state within a dynamical system other than the system's ground state, state of least energy. A ball resting in a hollow on a slope is a simple example of me ...
states are known, all with half-lives under a minute.


Electron shell

An aluminium atom has 13 electrons, arranged in an
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom ...
of , with three electrons beyond a stable noble gas configuration. Accordingly, the combined first three
ionization energies Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
of aluminium are far lower than the fourth ionization energy alone. Such an electron configuration is shared with the other well-characterized members of its group,
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
,
gallium Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in group 13 of the periodic table and is similar to the other metals of the group (aluminiu ...
,
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts p ...
, and
thallium Thallium is a chemical element with the Symbol (chemistry), symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists W ...
; it is also expected for
nihonium Nihonium is a synthetic chemical element with the symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinid ...
. Aluminium can relatively easily surrender its three outermost electrons in many chemical reactions (see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
). The
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
of aluminium is 1.61 (Pauling scale). A free aluminium atom has a
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
of 143  pm. With the three outermost electrons removed, the
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
shrinks to 39 pm for a 4-coordinated atom or 53.5 pm for a 6-coordinated atom. At
standard temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
, aluminium atoms (when not affected by atoms of other elements) form a face-centered cubic crystal system bound by
metallic bonding Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be descri ...
provided by atoms' outermost electrons; hence aluminium (at these conditions) is a metal. This crystal system is shared by many other metals, such as
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
; the size of a unit cell of aluminium is comparable to that of those other metals. The system, however, is not shared by the other members of its group; boron has ionization energies too high to allow metallization, thallium has a
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
structure, and gallium and indium have unusual structures that are not close-packed like those of aluminium and thallium. The few electrons that are available for
metallic bonding Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be descri ...
in aluminium metal are a probable cause for it being soft with a low melting point and low
electrical resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
.Greenwood and Earnshaw, pp. 222–4


Bulk

Aluminium metal has an appearance ranging from silvery white to dull gray, depending on the
surface roughness Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, ...
. Aluminium mirrors are the most reflective of all metal mirrors for the near
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
and far
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
light, and one of the most reflective in the visible spectrum, nearly on par with silver, and the two therefore look similar. Aluminium is also good at reflecting
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ...
, although prolonged exposure to sunlight in air adds wear to the surface of the metal; this may be prevented if aluminium is
anodized Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts. The process is called ''anodizing'' because the part to be treated forms the anode electrode of an electro ...
, which adds a protective layer of oxide on the surface. The density of aluminium is 2.70 g/cm3, about 1/3 that of steel, much lower than other commonly encountered metals, making aluminium parts easily identifiable through their lightness. Aluminium's low density compared to most other metals arises from the fact that its nuclei are much lighter, while difference in the unit cell size does not compensate for this difference. The only lighter metals are the metals of groups 1 and 2, which apart from
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
are too reactive for structural use (and beryllium is very toxic). Aluminium is not as strong or stiff as steel, but the low density makes up for this in the
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astrona ...
industry and for many other applications where light weight and relatively high strength are crucial. Pure aluminium is quite soft and lacking in strength. In most applications various
aluminium alloys An aluminium alloy (or aluminum alloy; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal ...
are used instead because of their higher strength and hardness. The
yield strength In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and wi ...
of pure aluminium is 7–11
MPa MPA or mPa may refer to: Academia Academic degrees * Master of Performing Arts * Master of Professional Accountancy * Master of Public Administration * Master of Public Affairs Schools * Mesa Preparatory Academy * Morgan Park Academy * Mound ...
, while
aluminium alloy An aluminium alloy (or aluminum alloy; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal ...
s have yield strengths ranging from 200 MPa to 600 MPa. Aluminium is
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
, with a percent elongation of 50-70%, and
malleable Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
allowing it to be easily drawn and
extruded Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex c ...
. It is also easily
machined Machining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes ...
and
cast Cast may refer to: Music * Cast (band), an English alternative rock band * Cast (Mexican band), a progressive Mexican rock band * The Cast, a Scottish musical duo: Mairi Campbell and Dave Francis * ''Cast'', a 2012 album by Trespassers William * ...
. Aluminium is an excellent
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
and
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gener ...
, having around 60% the conductivity of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, both thermal and electrical, while having only 30% of copper's density. Aluminium is capable of
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
, with a superconducting critical temperature of 1.2
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
and a critical magnetic field of about 100
gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
(10
millitesla The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conferenc ...
s). It is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, d ...
and thus essentially unaffected by static magnetic fields. The high electrical conductivity, however, means that it is strongly affected by alternating magnetic fields through the induction of
eddy currents Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magn ...
.


Chemistry

Aluminium combines characteristics of pre- and post-transition metals. Since it has few available electrons for metallic bonding, like its heavier
group 13 The Group 13 network ( pl, Trzynastka, Yiddish: ''דאָס דרײַצענטל'') was a Jewish Nazi collaborationist organization in the Warsaw Ghetto during the German occupation of Poland in World War II. The rise and fall of the Group ...
congeners, it has the characteristic physical properties of a post-transition metal, with longer-than-expected interatomic distances. Furthermore, as Al3+ is a small and highly charged cation, it is strongly polarizing and bonding in aluminium compounds tends towards
covalency A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
; this behavior is similar to that of
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
(Be2+), and the two display an example of a
diagonal relationship A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium ...
. The underlying core under aluminium's valence shell is that of the preceding
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemi ...
, whereas those of its heavier congeners
gallium Gallium is a chemical element with the symbol Ga and atomic number 31. Discovered by French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in group 13 of the periodic table and is similar to the other metals of the group (aluminiu ...
,
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts p ...
,
thallium Thallium is a chemical element with the Symbol (chemistry), symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists W ...
, and
nihonium Nihonium is a synthetic chemical element with the symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinid ...
also include a filled d-subshell and in some cases a filled f-subshell. Hence, the inner electrons of aluminium shield the valence electrons almost completely, unlike those of aluminium's heavier congeners. As such, aluminium is the most electropositive metal in its group, and its hydroxide is in fact more basic than that of gallium. Aluminium also bears minor similarities to the metalloid boron in the same group: AlX3 compounds are valence
isoelectronic Isoelectronicity is a phenomenon observed when two or more molecules have the same structure (positions and connectivities among atoms) and the same electronic configurations, but differ by what specific elements are at certain locations in the ...
to BX3 compounds (they have the same valence electronic structure), and both behave as
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
s and readily form adducts. Additionally, one of the main motifs of boron chemistry is regular icosahedron, regular icosahedral structures, and aluminium forms an important part of many icosahedral quasicrystal alloys, including the Al–Zn–Mg class. Aluminium has a high chemical affinity to oxygen, which renders it suitable for use as a reducing agent in the thermite reaction. A fine powder of aluminium metal reacts explosively on contact with liquid oxygen; under normal conditions, however, aluminium forms a thin oxide layer (~5 nm at room temperature) that protects the metal from further corrosion by oxygen, water, or dilute acid, a process termed passivation (chemistry), passivation. Because of its general resistance to corrosion, aluminium is one of the few metals that retains silvery reflectance in finely powdered form, making it an important component of silver (color), silver-colored paints. Aluminium is not attacked by oxidizing acids because of its passivation. This allows aluminium to be used to store reagents such as nitric acid, concentrated sulfuric acid, and some organic acids. In hot concentrated hydrochloric acid, aluminium reacts with water with evolution of hydrogen, and in aqueous sodium hydroxide or potassium hydroxide at room temperature to form aluminates—protective passivation under these conditions is negligible. Aqua regia also dissolves aluminium. Aluminium is corroded by dissolved chlorides, such as common sodium chloride, which is why household plumbing is never made from aluminium. The oxide layer on aluminium is also destroyed by contact with mercury (element), mercury due to Amalgam (chemistry), amalgamation or with salts of some electropositive metals. As such, the strongest aluminium alloys are less corrosion-resistant due to galvanic cell, galvanic reactions with alloyed
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, and aluminium's corrosion resistance is greatly reduced by aqueous salts, particularly in the presence of dissimilar metals. Aluminium reacts with most nonmetals upon heating, forming compounds such as aluminium nitride (AlN), aluminium sulfide (Al2S3), and the aluminium halides (AlX3). It also forms a wide range of intermetallic compounds involving metals from every group on the periodic table.


Inorganic compounds

The vast majority of compounds, including all aluminium-containing minerals and all commercially significant aluminium compounds, feature aluminium in the oxidation state 3+. The coordination number of such compounds varies, but generally Al3+ is either six- or four-coordinate. Almost all compounds of aluminium(III) are colorless. In aqueous solution, Al3+ exists as the hexaaqua cation [Al(H2O)6]3+, which has an approximate acid dissociation constant, Ka of 10−5. Such solutions are acidic as this cation can act as a proton donor and progressively hydrolysis, hydrolyze until a Precipitation (chemistry), precipitate of aluminium hydroxide, Al(OH)3, forms. This is useful for Sedimentation (water treatment), clarification of water, as the precipitate nucleates on Suspension (chemistry), suspended particles in the water, hence removing them. Increasing the pH even further leads to the hydroxide dissolving again as aluminate, [Al(H2O)2(OH)4], is formed. Aluminium hydroxide forms both salts and aluminates and dissolves in acid and alkali, as well as on fusion with acidic and basic oxides. This behavior of Al(OH)3 is termed amphoterism and is characteristic of weakly basic cations that form insoluble hydroxides and whose hydrated species can also donate their protons. One effect of this is that aluminium salts with weak acids are hydrolyzed in water to the aquated hydroxide and the corresponding nonmetal hydride: for example, aluminium sulfide yields hydrogen sulfide. However, some salts like aluminium carbonate exist in aqueous solution but are unstable as such; and only incomplete hydrolysis takes place for salts with strong acids, such as the halides, aluminium nitrate, nitrate, and aluminium sulfate, sulfate. For similar reasons, anhydrous aluminium salts cannot be made by heating their "hydrates": hydrated aluminium chloride is in fact not AlCl3·6H2O but [Al(H2O)6]Cl3, and the Al–O bonds are so strong that heating is not sufficient to break them and form Al–Cl bonds instead: :2[Al(H2O)6]Cl3 Al2O3 + 6 HCl + 9 H2O All four Halide, trihalides are well known. Unlike the structures of the three heavier trihalides, aluminium fluoride (AlF3) features six-coordinate aluminium, which explains its involatility and insolubility as well as high heat of formation. Each aluminium atom is surrounded by six fluorine atoms in a distorted octahedron, octahedral arrangement, with each fluorine atom being shared between the corners of two octahedra. Such units also exist in complex fluorides such as cryolite, Na3AlF6. AlF3 melts at and is made by reaction of aluminium oxide with hydrogen fluoride gas at . With heavier halides, the coordination numbers are lower. The other trihalides are Dimer (chemistry), dimeric or polymeric with tetrahedral four-coordinate aluminium centers. Aluminium trichloride (AlCl3) has a layered polymeric structure below its melting point of but transforms on melting to Al2Cl6 dimers. At higher temperatures those increasingly dissociate into trigonal planar AlCl3 monomers similar to the structure of boron trichloride, BCl3. Aluminium tribromide and aluminium triiodide form Al2X6 dimers in all three phases and hence do not show such significant changes of properties upon phase change. These materials are prepared by treating aluminium metal with the halogen. The aluminium trihalides form many addition compounds or complexes; their
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
ic nature makes them useful as catalysis, catalysts for the Friedel–Crafts reactions. Aluminium trichloride has major industrial uses involving this reaction, such as in the manufacture of anthraquinones and styrene; it is also often used as the precursor for many other aluminium compounds and as a reagent for converting nonmetal fluorides into the corresponding chlorides (a Transhalogenation, transhalogenation reaction). Aluminium forms one stable oxide with the chemical formula Al2O3, commonly called alumina. It can be found in nature in the mineral corundum, α-alumina; there is also a γ-alumina phase. Its crystalline form, corundum, is very hard (Mohs hardness 9), has a high melting point of , has very low volatility, is chemically inert, and a good electrical insulator, it is often used in abrasives (such as toothpaste), as a refractory material, and in ceramics, as well as being the starting material for the electrolytic production of aluminium metal. Sapphire and ruby are impure corundum contaminated with trace amounts of other metals. The two main oxide-hydroxides, AlO(OH), are boehmite and diaspore. There are three main trihydroxides: bayerite, gibbsite, and nordstrandite, which differ in their crystalline structure (polymorphism (materials science), polymorphs). Many other intermediate and related structures are also known. Most are produced from ores by a variety of wet processes using acid and base. Heating the hydroxides leads to formation of corundum. These materials are of central importance to the production of aluminium and are themselves extremely useful. Some mixed oxide phases are also very useful, such as spinel (MgAl2O4), Na-β-alumina (NaAl11O17), and tricalcium aluminate (Ca3Al2O6, an important mineral phase in Portland cement). The only stable chalcogenides under normal conditions are aluminium sulfide (Al2S3), aluminium selenide, selenide (Al2Se3), and aluminium telluride, telluride (Al2Te3). All three are prepared by direct reaction of their elements at about and quickly hydrolyze completely in water to yield aluminium hydroxide and the respective hydrogen chalcogenide. As aluminium is a small atom relative to these chalcogens, these have four-coordinate tetrahedral aluminium with various polymorphs having structures related to wurtzite, with two-thirds of the possible metal sites occupied either in an orderly (α) or random (β) fashion; the sulfide also has a γ form related to γ-alumina, and an unusual high-temperature hexagonal form where half the aluminium atoms have tetrahedral four-coordination and the other half have trigonal bipyramidal five-coordination. Four pnictides – aluminium nitride (AlN), aluminium phosphide (AlP), aluminium arsenide (AlAs), and aluminium antimonide (AlSb) – are known. They are all III-V semiconductors isoelectronic to
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
and germanium, all of which but AlN have the zinc blende structure. All four can be made by high-temperature (and possibly high-pressure) direct reaction of their component elements. Aluminium alloys well with most other metals (with the exception of most alkali metals and group 13 metals) and over 150 intermetallics with other metals are known. Preparation involves heating fixed metals together in certain proportion, followed by gradual cooling and Annealing (metallurgy), annealing. Bonding in them is predominantly Metallic bonding, metallic and the crystal structure primarily depends on efficiency of packing. There are few compounds with lower oxidation states. A few aluminium(I) compounds exist: AlF, AlCl, AlBr, and AlI exist in the gaseous phase when the respective trihalide is heated with aluminium, and at cryogenic temperatures. A stable derivative of aluminium monoiodide is the cyclic adduct formed with triethylamine, Al4I4(NEt3)4. Al2O and Al2S also exist but are very unstable. Very simple aluminium(II) compounds are invoked or observed in the reactions of Al metal with oxidants. For example, aluminium monoxide, AlO, has been detected in the gas phase after explosion and in stellar absorption spectra. More thoroughly investigated are compounds of the formula R4Al2 which contain an Al–Al bond and where R is a large organic ligand.


Organoaluminium compounds and related hydrides

A variety of compounds of empirical formula AlR3 and AlR1.5Cl1.5 exist. The aluminium trialkyls and triaryls are reactive, volatile, and colorless liquids or low-melting solids. They catch fire spontaneously in air and react with water, thus necessitating precautions when handling them. They often form dimers, unlike their boron analogues, but this tendency diminishes for branched-chain alkyls (e.g. isopropyl, Pr''i'', isobutyl, Bu''i'', Me3CCH2); for example, triisobutylaluminium exists as an equilibrium mixture of the monomer and dimer. These dimers, such as trimethylaluminium (Al2Me6), usually feature tetrahedral Al centers formed by dimerization with some alkyl group bridging between both aluminium atoms. They are HSAB theory, hard acids and react readily with ligands, forming adducts. In industry, they are mostly used in alkene insertion reactions, as discovered by Karl Ziegler, most importantly in "growth reactions" that form long-chain unbranched primary alkenes and alcohols, and in the low-pressure polymerization of ethene and propene. There are also some heterocycle, heterocyclic and cluster organoaluminium compounds involving Al–N bonds. The industrially most important aluminium hydride is lithium aluminium hydride (LiAlH4), which is used in as a reducing agent in organic chemistry. It can be produced from lithium hydride and Aluminium chloride, aluminium trichloride. The simplest hydride, aluminium hydride or alane, is not as important. It is a polymer with the formula (AlH3)''n'', in contrast to the corresponding boron hydride that is a dimer with the formula (BH3)2.


Natural occurrence


Space

Aluminium's per-particle abundance in the Solar System is 3.15 parts per million, ppm (parts per million). It is the twelfth most abundant of all elements and third most abundant among the elements that have odd atomic numbers, after hydrogen and nitrogen. The only stable isotope of aluminium, 27Al, is the eighteenth most abundant nucleus in the Universe. It is created almost entirely after fusion of carbon in massive stars that will later become Type II supernovas: this fusion creates 26Mg, which, upon capturing free protons and neutrons becomes aluminium. Some smaller quantities of 27Al are created in hydrogen burning shells of evolved stars, where 26Mg can capture free protons. Essentially all aluminium now in existence is 27Al. 26Al was present in the early Solar System with abundance of 0.005% relative to 27Al but its half-life of 728,000 years is too short for any original nuclei to survive; 26Al is therefore extinct radionuclide, extinct. Unlike for 27Al, hydrogen burning is the primary source of 26Al, with the nuclide emerging after a nucleus of 25Mg catches a free proton. However, the trace radioisotope, trace quantities of 26Al that do exist are the most common gamma ray emitter in the interstellar gas; if the original 26Al were still present, Gamma-ray astronomy, gamma ray maps of the Milky Way would be brighter.


Earth

Overall, the Earth is about 1.59% aluminium by mass (seventh in abundance by mass).William F McDonoug
The composition of the Earth
quake.mit.edu, archived by the Internet Archive Wayback Machine.
Aluminium occurs in greater proportion in the Earth's crust than in the Universe at large, because aluminium easily forms the oxide and becomes bound into rocks and stays in the Earth's crust, while less reactive metals sink to the core. In the Earth's crust, aluminium is the most abundant metallic element (8.23% by mass) and the third most abundant of all elements (after oxygen and silicon). A large number of silicates in the Earth's crust contain aluminium. In contrast, the Earth's mantle (geology), mantle is only 2.38% aluminium by mass. Aluminium also occurs in seawater at a concentration of 2 μg/kg. Because of its strong affinity for oxygen, aluminium is almost never found in the elemental state; instead it is found in oxides or silicates. Feldspars, the most common group of minerals in the Earth's crust, are aluminosilicates. Aluminium also occurs in the minerals beryl, cryolite, garnet, spinel, and turquoise. Impurities in Al2O3, such as chromium and iron, yield the gemstones ruby and sapphire, respectively. Native aluminium metal is extremely rare and can only be found as a minor phase in low oxygen fugacity environments, such as the interiors of certain volcanoes. Native aluminium has been reported in cold seeps in the northeastern continental slope of the South China Sea. It is possible that these deposits resulted from bacterial Redox, reduction of tetrahydroxoaluminate Al(OH)4. Although aluminium is a common and widespread element, not all aluminium minerals are economically viable sources of the metal. Almost all metallic aluminium is produced from the ore bauxite (AlO''x''(OH)3–2''x''). Bauxite occurs as a weathering product of low iron and silica bedrock in tropical climatic conditions. In 2017, most bauxite was mined in Australia, China, Guinea, and India.


History

The history of aluminium has been shaped by usage of alum. The first written record of alum, made by Ancient Greece, Greek historian Herodotus, dates back to the 5th century BCE. The ancients are known to have used alum as a dyeing mordant and for city defense. After the Crusades, alum, an indispensable good in the European fabric industry, was a subject of international commerce; it was imported to Europe from the eastern Mediterranean until the mid-15th century. The nature of alum remained unknown. Around 1530, Swiss physician Paracelsus suggested alum was a salt of an earth of alum. In 1595, German doctor and chemist Andreas Libavius experimentally confirmed this. In 1722, German chemist Friedrich Hoffmann announced his belief that the base of alum was a distinct earth. In 1754, German chemist Andreas Sigismund Marggraf synthesized alumina by boiling clay in sulfuric acid and subsequently adding potash. Attempts to produce aluminium metal date back to 1760. The first successful attempt, however, was completed in 1824 by Danish physicist and chemist
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricity ...
. He reacted anhydrous aluminium chloride with potassium amalgam (chemistry), amalgam, yielding a lump of metal looking similar to tin. He presented his results and demonstrated a sample of the new metal in 1825. In 1827, German chemist Friedrich Wöhler repeated Ørsted's experiments but did not identify any aluminium. (The reason for this inconsistency was only discovered in 1921.) He conducted a similar experiment in the same year by mixing anhydrous aluminium chloride with potassium and produced a powder of aluminium. In 1845, he was able to produce small pieces of the metal and described some physical properties of this metal. For many years thereafter, Wöhler was credited as the discoverer of aluminium. As Wöhler's method could not yield great quantities of aluminium, the metal remained rare; its cost exceeded that of gold. The first industrial production of aluminium was established in 1856 by French chemist Henri Etienne Sainte-Claire Deville and companions. Deville had discovered that aluminium trichloride could be reduced by sodium, which was more convenient and less expensive than potassium, which Wöhler had used. Even then, aluminium was still not of great purity and produced aluminium differed in properties by sample. Because of its electricity-conducting capacity, aluminium was used as the cap of the Washington Monument, completed in 1885. The tallest building in the world at the time, the non-corroding metal cap was intended to serve as a lightning rod peak. The first industrial large-scale production method was independently developed in 1886 by French engineer
Paul Héroult Paul (Louis-Toussaint) Héroult (10 April 1863 – 9 May 1914) was a French scientist. He was the inventor of the aluminium electrolysis and developed the first successful commercial electric arc furnace. He lived in Thury-Harcourt, Normandy. ...
and American engineer
Charles Martin Hall Charles Martin Hall (December 6, 1863 – December 27, 1914) was an American inventor, businessman, and chemist. He is best known for his invention in 1886 of an inexpensive method for producing aluminum, which became the first metal to atta ...
; it is now known as the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
. The Hall–Héroult process converts alumina into metal. Austrian chemist Carl Josef Bayer, Carl Joseph Bayer discovered a way of purifying bauxite to yield alumina, now known as the Bayer process, in 1889. Modern production of the aluminium metal is based on the Bayer and Hall–Héroult processes. Prices of aluminium dropped and aluminium became widely used in jewelry, everyday items, eyeglass frames, optical instruments, tableware, and Aluminium foil, foil in the 1890s and early 20th century. Aluminium's ability to form hard yet light alloys with other metals provided the metal with many uses at the time. During World War I, major governments demanded large shipments of aluminium for light strong airframes; during World War II, demand by major governments for aviation was even higher. By the mid-20th century, aluminium had become a part of everyday life and an essential component of housewares. In 1954, production of aluminium surpassed that of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, historically second in production only to iron, making it the most produced
non-ferrous metal In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable proper ...
. During the mid-20th century, aluminium emerged as a civil engineering material, with building applications in both basic construction and interior finish work, and increasingly being used in military engineering, for both airplanes and land armor vehicle engines. Sputnik 1, Earth's first artificial satellite, launched in 1957, consisted of two separate aluminium semi-spheres joined and all subsequent space vehicles have used aluminium to some extent. The aluminium can was invented in 1956 and employed as a storage for drinks in 1958. Throughout the 20th century, the production of aluminium rose rapidly: while the world production of aluminium in 1900 was 6,800 metric tons, the annual production first exceeded 100,000 metric tons in 1916; 1,000,000 tons in 1941; 10,000,000 tons in 1971. In the 1970s, the increased demand for aluminium made it an exchange commodity; it entered the London Metal Exchange, the oldest industrial metal exchange in the world, in 1978. The output continued to grow: the annual production of aluminium exceeded 50,000,000 metric tons in 2013. The real price for aluminium declined from $14,000 per metric ton in 1900 to $2,340 in 1948 (in 1998 United States dollars). Extraction and processing costs were lowered over technological progress and the scale of the economies. However, the need to exploit lower-grade poorer quality deposits and the use of fast increasing input costs (above all, energy) increased the net cost of aluminium; the real price began to grow in the 1970s with the rise of energy cost. Production moved from the industrialized countries to countries where production was cheaper. Production costs in the late 20th century changed because of advances in technology, lower energy prices, exchange rates of the United States dollar, and alumina prices. The BRIC countries' combined share in primary production and primary consumption grew substantially in the first decade of the 21st century. China is accumulating an especially large share of the world's production thanks to an abundance of resources, cheap energy, and governmental stimuli; it also increased its consumption share from 2% in 1972 to 40% in 2010. In the United States, Western Europe, and Japan, most aluminium was consumed in transportation, engineering, construction, and packaging. In 2021, prices for industrial metals such as aluminium have soared to near-record levels as 2021–2022 global energy crisis, energy shortages in China drive up costs for electricity.


Etymology

The names ''aluminium'' and ''aluminum'' are derived from the word ''alumine'', an obsolete term for ''alumina'', a Aluminium oxide, naturally occurring oxide of aluminium. ''Alumine'' was borrowed from French, which in turn derived it from ''alumen'', the classical Latin name for alum, the mineral from which it was collected. The Latin word ''alumen'' stems from the Proto-Indo-European language, Proto-Indo-European root ''*alu-'' meaning "bitter" or "beer".


Origins

British chemist Humphry Davy, who performed a number of experiments aimed to isolate the metal, is credited as the person who named the element. The first name proposed for the metal to be isolated from alum was ''alumium'', which Davy suggested in an 1808 article on his electrochemical research, published in Philosophical Transactions of the Royal Society. It appeared that the name was created from the English word ''alum'' and the Latin suffix ''-ium''; but it was customary then to give elements names originating in Latin, so that this name was not adopted universally. This name was criticized by contemporary chemists from France, Germany, and Sweden, who insisted the metal should be named for the oxide, alumina, from which it would be isolated. The English name ''alum'' does not come directly from Latin, whereas ''alumine''/''alumina'' obviously comes from the Latin word ''alumen'' (upon declension, ''alumen'' changes to ''alumin-''). One example was ''Essai sur la Nomenclature chimique'' (July 1811), written in French by a Swedish chemist, Jöns Jacob Berzelius, in which the name ''aluminium'' is given to the element that would be synthesized from alum.. (Another article in the same journal issue also gives the name ''aluminium'' to the metal whose oxide is the basis of sapphire.) A January 1811 summary of one of Davy's lectures at the Royal Society mentioned the name ''aluminium'' as a possibility. The next year, Davy published a chemistry textbook in which he used the spelling ''aluminum''. Both spellings have coexisted since. Their usage is regional: ''aluminum'' dominates in the United States and Canada; ''aluminium'', in the rest of the English-speaking world.


Spelling

In 1812, a British scientist, Thomas Young (scientist), Thomas Young, wrote an anonymous review of Davy's book, in which he proposed the name ''aluminium'' instead of ''aluminum'', which he thought had a "less classical sound". This name did catch on: although the ' spelling was occasionally used in Britain, the American scientific language used ' from the start. Most scientists throughout the world used ' in the 19th century; and it was entrenched in many other European languages, such as French language, French, German language, German, and Dutch language, Dutch. In 1828, an American lexicographer, Noah Webster, entered only the ''aluminum'' spelling in his ''Webster's Dictionary#First edition 1828, American Dictionary of the English Language''. In the 1830s, the ' spelling gained usage in the United States; by the 1860s, it had become the more common spelling there outside science. In 1892, Hall used the ' spelling in his advertising handbill for his new electrolytic method of producing the metal, despite his constant use of the ' spelling in all the patents he filed between 1886 and 1903: it is unknown whether this spelling was introduced by mistake or intentionally; but Hall preferred ''aluminum'' since its introduction because it resembled ''platinum'', the name of a prestigious metal. By 1890, both spellings had been common in the United States, the ' spelling being slightly more common; by 1895, the situation had reversed; by 1900, ''aluminum'' had become twice as common as ''aluminium''; in the next decade, the ' spelling dominated American usage. In 1925, the American Chemical Society adopted this spelling. The International Union of Pure and Applied Chemistry (IUPAC) adopted ''aluminium'' as the standard international name for the element in 1990. In 1993, they recognized ''aluminum'' as an acceptable variant; the most recent IUPAC nomenclature of inorganic chemistry 2005, 2005 edition of the IUPAC nomenclature of inorganic chemistry also acknowledges this spelling. IUPAC official publications use the ' spelling as primary, and they list both where it is appropriate.


Production and refinement

The production of aluminium starts with the extraction of bauxite rock from the ground. The bauxite is processed and transformed using the Bayer process into alumina, which is then processed using the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
, resulting in the final aluminium metal. Aluminium production is highly energy-consuming, and so the producers tend to locate smelters in places where electric power is both plentiful and inexpensive. As of 2019, the world's largest Smelting, smelters of aluminium are located in China, India, Russia, Canada, and the United Arab Emirates, while China is by far the top producer of aluminium with a world share of fifty-five percent. According to the International Resource Panel's Metal Stocks in Society report, the global per capita stock of aluminium in use in society (i.e. in cars, buildings, electronics, etc.) is . Much of this is in more-developed countries ( per capita) rather than less-developed countries ( per capita).


Bayer process

Bauxite is converted to alumina by the Bayer process. Bauxite is blended for uniform composition and then is ground. The resulting slurry is mixed with a hot solution of sodium hydroxide; the mixture is then treated in a digester vessel at a pressure well above atmospheric, dissolving the aluminium hydroxide in bauxite while converting impurities into relatively insoluble compounds: After this reaction, the slurry is at a temperature above its atmospheric boiling point. It is cooled by removing steam as pressure is reduced. The bauxite residue is separated from the solution and discarded. The solution, free of solids, is seeded with small crystals of aluminium hydroxide; this causes decomposition of the [Al(OH)4] ions to aluminium hydroxide. After about half of aluminium has precipitated, the mixture is sent to classifiers. Small crystals of aluminium hydroxide are collected to serve as seeding agents; coarse particles are converted to alumina by heating; the excess solution is removed by evaporation, (if needed) purified, and recycled.


Hall–Héroult process

The conversion of alumina to aluminium metal is achieved by the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
. In this energy-intensive process, a solution of alumina in a molten () mixture of cryolite (Na3AlF6) with calcium fluoride is electrolysis, electrolyzed to produce metallic aluminium. The liquid aluminium metal sinks to the bottom of the solution and is tapped off, and usually cast into large blocks called Bar stock, aluminium billets for further processing. Anodes of the electrolysis cell are made of carbon—the most resistant material against fluoride corrosion—and either bake at the process or are prebaked. The former, also called Söderberg anodes, are less power-efficient and fumes released during baking are costly to collect, which is why they are being replaced by prebaked anodes even though they save the power, energy, and labor to prebake the cathodes. Carbon for anodes should be preferably pure so that neither aluminium nor the electrolyte is contaminated with ash. Despite carbon's resistivity against corrosion, it is still consumed at a rate of 0.4–0.5 kg per each kilogram of produced aluminium. Cathodes are made of anthracite; high purity for them is not required because impurities Leaching (chemistry), leach only very slowly. The cathode is consumed at a rate of 0.02–0.04 kg per each kilogram of produced aluminium. A cell is usually terminated after 2–6 years following a failure of the cathode. The Hall–Heroult process produces aluminium with a purity of above 99%. Further purification can be done by the Hoopes process. This process involves the electrolysis of molten aluminium with a sodium, barium, and aluminium fluoride electrolyte. The resulting aluminium has a purity of 99.99%. Electric power represents about 20 to 40% of the cost of producing aluminium, depending on the location of the smelter. Aluminium production consumes roughly 5% of electricity generated in the United States. Because of this, alternatives to the Hall–Héroult process have been researched, but none has turned out to be economically feasible.


Recycling

Recovery of the metal through recycling has become an important task of the aluminium industry. Recycling was a low-profile activity until the late 1960s, when the growing use of aluminium beverage cans brought it to public awareness. Recycling involves melting the scrap, a process that requires only 5% of the energy used to produce aluminium from ore, though a significant part (up to 15% of the input material) is lost as dross (ash-like oxide). An aluminium stack melter produces significantly less dross, with values reported below 1%. White dross from primary aluminium production and from secondary recycling operations still contains useful quantities of aluminium that can be Aluminium dross recycling, extracted industrially. The process produces aluminium billets, together with a highly complex waste material. This waste is difficult to manage. It reacts with water, releasing a mixture of gases (including, among others, hydrogen, acetylene, and ammonia), which spontaneously ignites on contact with air; contact with damp air results in the release of copious quantities of ammonia gas. Despite these difficulties, the waste is used as a filler in asphalt and concrete.


Applications


Metal

The global production of aluminium in 2016 was 58.8 million metric tons. It exceeded that of any other metal except iron (1,231 million metric tons). Aluminium is almost always alloyed, which markedly improves its mechanical properties, especially when tempering (metallurgy), tempered. For example, the common aluminium foils and beverage cans are alloys of 92% to 99% aluminium. The main alloying agents are
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
, zinc,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
, manganese, and
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
(e.g., duralumin) with the levels of other metals in a few percent by weight. Aluminium, both wrought and cast, has been alloyed with: manganese,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
,
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
and zinc among others. For example, the Kynal family of alloys was developed by the British chemical manufacturer Imperial Chemical Industries. The major uses for aluminium metal are in: * Transportation (automobiles, aircraft, trucks, railway cars, marine vessels, bicycles, spacecraft, ''etc.''). Aluminium is used because of its low density; * Packaging (aluminium can, cans, foil, frame, ''etc.''). Aluminium is used because it is non-toxic (see #Toxicity, below), non-Adsorption, adsorptive, and splinter-proof; * Building and construction (windows, doors, Siding (construction), siding, building wire, sheathing, roofing, ''etc.''). Since steel is cheaper, aluminium is used when lightness, corrosion resistance, or engineering features are important; * Electricity-related uses (conductor alloys, motors, and generators, transformers, capacitors, ''etc.''). Aluminium is used because it is relatively cheap, highly conductive, has adequate mechanical strength and low density, and resists corrosion; * A wide range of household items, from cooking utensils to furniture. Low density, good appearance, ease of fabrication, and durability are the key factors of aluminium usage; * Machinery and equipment (processing equipment, pipes, tools). Aluminium is used because of its corrosion resistance, non-pyrophoricity, and mechanical strength. * Portable computer cases. Currently rarely used without alloying, but aluminium can be recycled and clean aluminium has residual market value: for example, the Used Beverage Can, used beverage can (UBC) material was used to encase the electronic components of MacBook Air laptop, Pixel 5 smartphone or Montblanc (company), Summit Lite smartwatch.


Compounds

The great majority (about 90%) of aluminium oxide is converted to metallic aluminium. Being a very hard material (Mohs hardness 9), alumina is widely used as an abrasive; being extraordinarily chemically inert, it is useful in highly reactive environments such as high pressure sodium lamps. Aluminium oxide is commonly used as a catalyst for industrial processes; e.g. the Claus process to convert hydrogen sulfide to sulfur in refineries and to alkylation, alkylate amines. Many industrial Catalysis, catalysts are catalyst support, supported by alumina, meaning that the expensive Catalysis, catalyst material is dispersed over a surface of the inert alumina. Another principal use is as a drying agent or absorbent. Several sulfates of aluminium have industrial and commercial application. Aluminium sulfate (in its hydrate form) is produced on the annual scale of several millions of metric tons. About two-thirds is consumed in water treatment. The next major application is in the manufacture of paper. It is also used as a mordant in dyeing, in pickling seeds, deodorizing of mineral oils, in Tanning (leather), leather tanning, and in production of other aluminium compounds. Two kinds of alum, ammonium alum and potassium alum, were formerly used as mordants and in leather tanning, but their use has significantly declined following availability of high-purity aluminium sulfate. Anhydrous aluminium chloride is used as a catalyst in chemical and petrochemical industries, the dyeing industry, and in synthesis of various inorganic and organic compounds. Aluminium hydroxychlorides are used in purifying water, in the paper industry, and as antiperspirants. Sodium aluminate is used in treating water and as an accelerator of solidification of cement. Many aluminium compounds have niche applications, for example: * Aluminium acetate in solution is used as an astringent. * Aluminium phosphate is used in the manufacture of glass, ceramic, Wood pulp, pulp and paper products, cosmetics, paints, varnishes, and in dental cement. * Aluminium hydroxide is used as an antacid, and mordant; it is used also in water purification, the manufacture of glass and ceramics, and in the waterproofing of Textile, fabrics. * Lithium aluminium hydride is a powerful reducing agent used in organic chemistry. * Organoaluminium chemistry, Organoaluminiums are used as
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
s and co-catalysts. * Methylaluminoxane is a co-catalyst for Ziegler–Natta olefin polymerization to produce vinyl polymers such as polyethene. * Aqueous aluminium ions (such as aqueous aluminium sulfate) are used to treat against fish parasites such as ''Gyrodactylus salaris''. * In many vaccines, certain aluminium salts serve as an immune Immunologic adjuvant, adjuvant (immune response booster) to allow the protein in the vaccine to achieve sufficient potency as an immune stimulant.


Aluminized substrates

Aluminizing is the process of coating a structure or material with a thin layer of aluminium. It is done to impart specific traits that the underlying substrate (materials science), substrate lacks, such as a certain chemical or physical property. Aluminized materials include: * Aluminized steel, for corrosion resistance and other properties * Aluminized screen, for display devices * Aluminized cloth, to reflect heat * Aluminized mylar, to reflect heat


Biology

Despite its widespread occurrence in the Earth's crust, aluminium has no known function in biology. At pH 6–9 (relevant for most natural waters), aluminium precipitates out of water as the hydroxide and is hence not available; most elements behaving this way have no biological role or are toxic. Aluminium sulfate has an Median lethal dose, LD50 of 6207 mg/kg (oral, mouse), which corresponds to 435 grams for an person.


Toxicity

Aluminium is classified as a non-carcinogen by the United States Department of Health and Human Services. A review published in 1988 said that there was little evidence that normal exposure to aluminium presents a risk to healthy adult, and a 2014 multi-element toxicology review was unable to find deleterious effects of aluminium consumed in amounts not greater than 40 mg/day per kg of body weight, body mass. Most aluminium consumed will leave the body in feces; most of the small part of it that enters the bloodstream, will be excreted via urine; nevertheless some aluminium does pass the blood-brain barrier and is lodged preferentially in the brains of Alzheimer's patients. Evidence published in 1989 indicates that, for Alzheimer's patients, aluminium may act by electrostatically crosslinking proteins, thus down-regulating genes in the superior temporal gyrus.


Effects

Aluminium, although rarely, can cause vitamin D-resistant osteomalacia, erythropoietin-resistant microcytic anemia, and central nervous system alterations. People with kidney insufficiency are especially at a risk. Chronic ingestion of hydrated aluminium silicates (for excess gastric acidity control) may result in aluminium binding to intestinal contents and increased elimination of other metals, such as iron or zinc; sufficiently high doses (>50 g/day) can cause anemia. During the 1988 Camelford water pollution incident people in Camelford had their drinking water contaminated with aluminium sulfate for several weeks. A final report into the incident in 2013 concluded it was unlikely that this had caused long-term health problems. Aluminium has been suspected of being a possible cause of Alzheimer's disease, but research into this for over 40 years has found, , no good evidence of causal effect. Aluminium increases estrogen-related gene expression in human breast cancer cells cultured in the laboratory. In very high doses, aluminium is associated with altered function of the blood–brain barrier. A small percentage of people have contact allergy, allergies to aluminium and experience itchy red rashes, headache, muscle pain, joint pain, poor memory, insomnia, depression, asthma, irritable bowel syndrome, or other symptoms upon contact with products containing aluminium. Exposure to powdered aluminium or aluminium welding fumes can cause pulmonary fibrosis. Fine aluminium powder can ignite or explode, posing another workplace hazard.


Exposure routes

Food is the main source of aluminium. Drinking water contains more aluminium than solid food; however, aluminium in food may be absorbed more than aluminium from water. Major sources of human oral exposure to aluminium include food (due to its use in food additives, food and beverage packaging, and cooking utensils), drinking water (due to its use in municipal water treatment), and aluminium-containing medications (particularly antacid/antiulcer and buffered aspirin formulations). Dietary exposure in Europeans averages to 0.2–1.5 mg/kg/week but can be as high as 2.3 mg/kg/week. Higher exposure levels of aluminium are mostly limited to miners, aluminium production workers, and Kidney dialysis, dialysis patients. Consumption of antacids, antiperspirants, vaccines, and cosmetics provide possible routes of exposure. Consumption of acidic foods or liquids with aluminium enhances aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nerve and bone tissues.


Treatment

In case of suspected sudden intake of a large amount of aluminium, the only treatment is deferoxamine mesylate which may be given to help eliminate aluminium from the body by chelation. However, this should be applied with caution as this reduces not only aluminium body levels, but also those of other metals such as copper or iron.


Environmental effects

High levels of aluminium occur near mining sites; small amounts of aluminium are released to the environment at the coal-fired power plants or Incineration, incinerators. Aluminium in the air is washed out by the rain or normally settles down but small particles of aluminium remain in the air for a long time. Acidic precipitation is the main natural factor to mobilize aluminium from natural sources and the main reason for the environmental effects of aluminium; however, the main factor of presence of aluminium in salt and freshwater are the industrial processes that also release aluminium into air. In water, aluminium acts as a toxiс agent on gill-breathing animals such as fish when the water is acidic, in which aluminium may precipitate on gills, which causes loss of Blood plasma, plasma- and hemolymph ions leading to Osmoregulation, osmoregulatory failure. Organic complexes of aluminium may be easily absorbed and interfere with metabolism in mammals and birds, even though this rarely happens in practice. Aluminium is primary among the factors that reduce plant growth on acidic soils. Although it is generally harmless to plant growth in pH-neutral soils, in acid soils the concentration of toxic Al3+
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s increases and disturbs root growth and function. Wheat has adaptation, developed a tolerance to aluminium, releasing organic compounds that bind to harmful aluminium cations. Sorghum is believed to have the same tolerance mechanism. Aluminium production possesses its own challenges to the environment on each step of the production process. The major challenge is the greenhouse gas emissions. These gases result from electrical consumption of the smelters and the byproducts of processing. The most potent of these gases are Fluorocarbon, perfluorocarbons from the smelting process. Released sulfur dioxide is one of the primary precursors of acid rain. Biodegradation of metallic aluminium is extremely rare; most aluminium-corroding organisms do not directly attack or consume the aluminium, but instead produce corrosive wastes. The fungus ''Geotrichum candidum'' can consume the aluminium in compact discs. The bacterium ''Pseudomonas aeruginosa'' and the fungus ''Cladosporium resinae'' are commonly detected in aircraft fuel tanks that use kerosene-based fuels (not avgas), and laboratory cultures can degrade aluminium.


See also

* Aluminium granules * Aluminium joining * Aluminium–air battery * Panel edge staining * Quantum clock


Notes


References


Bibliography

* * * * * * * * *


Further reading

* Mimi Sheller, ''Aluminum Dream: The Making of Light Modernity''. Cambridge, Mass.: Massachusetts Institute of Technology Press, 2014.


External links


Aluminium
at ''The Periodic Table of Videos'' (University of Nottingham) *
Toxic Substances Portal – Aluminum
' – from the Agency for Toxic Substances and Disease Registry, United States Department of Health and Human Services
CDC – NIOSH Pocket Guide to Chemical Hazards – Aluminum



Price history of aluminum, according to the IMF

History of Aluminium
– from the website of the International Aluminium Institute

* {{Authority control Aluminium, Chemical elements Post-transition metals Rocket fuels, Aluminium Electrical conductors Pyrotechnic fuels Airship technology Reducing agents E-number additives Native element minerals Chemical elements with face-centered cubic structure