Altitude training is the practice by some
endurance
Endurance (also related to sufferance, resilience, constitution, fortitude, and hardiness) is the ability of an organism to exert itself and remain active for a long period of time, as well as its ability to resist, withstand, recover from a ...
athlete
An athlete (also sportsman or sportswoman) is a person who competes in one or more sports that involve physical strength, speed, or endurance.
Athletes may be professionals or amateurs. Most professional athletes have particularly well-devel ...
s of training for several weeks at high
altitude
Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
, preferably over above
sea level
Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardised g ...
, though more commonly at intermediate altitudes due to the shortage of suitable high-altitude locations. At intermediate altitudes, the air still contains approximately 20.9%
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
, but the
barometric pressure
Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, 7 ...
and thus the
partial pressure
In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas ...
of oxygen is reduced.
Depending on the protocols used, the body may acclimate to the
relative lack of oxygen in one or more ways such as increasing the mass of
red blood cell
Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
s and
hemoglobin
Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
, or altering muscle metabolism.
Proponents claim that when such athletes travel to competitions at lower altitudes they will still have a higher concentration of red blood cells for 10–14 days, and this gives them a competitive advantage. Some athletes live permanently at high altitude, only returning to sea level to compete, but their training may suffer due to less available oxygen for workouts.
Altitude training can be
simulated
A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the s ...
through use of an
altitude simulation tent,
altitude simulation room, or mask-based
hypoxicator
A hypoxicator is a medical device intended to provide a stimulus for the adaptation of an individual's cardiovascular system by means of breathing reduced oxygen hypoxic air and triggering mechanisms of compensation. The aim of intermittent hyp ...
system where the barometric pressure is kept the same, but the oxygen content is reduced which also reduces the partial pressure of oxygen.
Hypoventilation training
Hypoventilation training is a physical training method in which periods of exercise with reduced breathing frequency are interspersed with periods with normal breathing. The hypoventilation technique consists of short breath holdings and can be p ...
, which consists of reducing the breathing frequency while exercising, can also mimic altitude training by significantly decreasing blood and muscle oxygenation.
Background history
The study of altitude training was heavily delved into during and after the
1968 Olympics, which took place in
Mexico City, Mexico
Mexico City ( es, link=no, Ciudad de México, ; abbr.: CDMX; Nahuatl: ''Altepetl Mexico'') is the capital and largest city of Mexico, and the most populous city in North America. One of the world's alpha cities, it is located in the Valley of Mex ...
: elevation . It was during these Olympic Games that endurance events saw significant below-record finishes while anaerobic, sprint events broke all types of records. It was speculated prior to these events how the altitude might affect performances of these elite, world-class athletes and most of the conclusions drawn were equivalent to those hypothesized: that endurance events would suffer and that short events would not see significant negative changes. This was attributed not only to less resistance during movement—due to the less dense air—but also to the anaerobic nature of the sprint events. Ultimately, these games inspired investigations into altitude training from which unique training principles were developed with the aim of avoiding underperformance.
Training regimens
Athletes or individuals who wish to gain a competitive edge for endurance events can take advantage of exercising at high altitude.
High altitude
Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context ...
is typically defined as any elevation above .
Live-high, train-low
One suggestion for optimizing adaptations and maintaining performance is the live-high, train-low principle. This training idea involves living at higher altitudes in order to experience the physiological adaptations that occur, such as increased
erythropoietin (EPO) levels, increased red blood cell levels, and higher
VO2 max, while maintaining the same exercise intensity during training at sea level. Due to the environmental differences at high altitude, it may be necessary to decrease the intensity of workouts. Studies examining the live-high, train-low theory have produced varied results, which may be dependent on a variety of factors such as individual variability, time spent at high altitude, and the type of training program. For example, it has been shown that athletes performing primarily anaerobic activity do not necessarily benefit from altitude training as they do not rely on oxygen to fuel their performances.
A non-training elevation of and training at or less has shown to be the optimal approach for altitude training. Good venues for live-high train-low include
Mammoth Lakes, California
Mammoth Lakes is a town in Mono County, California, and is the county's only incorporated community. It is located immediately to the east of Mammoth Mountain, at an elevation of . As of the 2020 United States Census, the population was 7,191, r ...
;
Flagstaff, Arizona
Flagstaff ( ) is a city in, and the county seat of, Coconino County, Arizona, Coconino County in northern Arizona, in the southwestern United States. In 2019, the city's estimated population was 75,038. Flagstaff's combined metropolitan area has ...
; and the
Sierra Nevada
The Sierra Nevada () is a mountain range in the Western United States, between the Central Valley of California and the Great Basin. The vast majority of the range lies in the state of California, although the Carson Range spur lies primarily ...
, near
Granada
Granada (,, DIN 31635, DIN: ; grc, Ἐλιβύργη, Elibýrgē; la, Illiberis or . ) is the capital city of the province of Granada, in the autonomous communities of Spain, autonomous community of Andalusia, Spain. Granada is located at the fo ...
in Spain.
Altitude training can produce increases in speed, strength, endurance, and recovery by maintaining altitude exposure for a significant period of time. A study using simulated altitude exposure for 18 days, yet training closer to sea-level, showed performance gains were still evident 15 days later.
Opponents of altitude training argue that an athlete's red blood cell concentration returns to normal levels within days of returning to sea level and that it is impossible to train at the same intensity that one could at sea level, reducing the training effect and wasting training time due to
altitude sickness
Altitude sickness, the mildest form being acute mountain sickness (AMS), is the harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. People can respond to high altitude in different ways. Sympt ...
. Altitude training can produce slow recovery due to the stress of hypoxia.
Exposure to extreme hypoxia at altitudes above can lead to considerable deterioration of skeletal muscle tissue. Five weeks at this altitude leads to a loss of muscle volume of the order of 10–15%.
Live-high, train-high
In the live-high, train-high regime, an athlete lives and trains at a desired altitude. The stimulus on the body is constant because the athlete is continuously in a hypoxic environment. Initially VO
2 max drops considerably: by around 7% for every 1000 m above sea level. Athletes will no longer be able to
metabolize
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
as much oxygen as they would at sea level. Any given velocity must be performed at a higher relative intensity at altitude.
[
]
Repeated sprints in hypoxia
In repeated sprints in hypoxia
Hypoxia means a lower than normal level of oxygen, and may refer to:
Reduced or insufficient oxygen
* Hypoxia (environmental), abnormally low oxygen content of the specific environment
* Hypoxia (medical), abnormally low level of oxygen in the tis ...
(RSH), athletes run short sprints under 30 seconds as fast as they can. They experience incomplete recoveries in hypoxic conditions. The exercise to rest time ratio is less than 1:4, which means for every 30 second all out sprint, there is less than 120 seconds of rest.
When comparing RSH and repeated sprints in normoxia (RSN), studies show that RSH improved time to fatigue and power output. RSH and RSN groups were tested before and after a 4-week training period. Both groups initially completed 9–10 all-out sprints before total exhaustion
Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
. After the 4 week training period, the RSH group was able to complete 13 all out sprints before exhaustion and the RSN group only completed 9.
Possible physiological advantages from RSH include compensatory vasodilation
Vasodilation is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, ...
and regeneration of phosphocreatine
Phosphocreatine, also known as creatine phosphate (CP) or PCr (Pcr), is a phosphorylated form of creatine that serves as a rapidly mobilizable reserve of high-energy phosphates in skeletal muscle, myocardium and the brain to recycle adenosine tr ...
(PCr). The body's tissues have the ability to sense hypoxia and induce vasodilation. The higher blood flow helps the skeletal muscles maximize oxygen delivery. A greater level of PCr resynthesis augments the muscles power production during the initial stages of high-intensity exercise.
RSH is still a relatively new training method and is not fully understood.
Artificial altitude
Altitude simulation systems have enabled protocols that do not suffer from the tension between better altitude physiology and more intense workouts. Such simulated altitude systems can be utilized closer to competition if necessary.
In Finland
Finland ( fi, Suomi ; sv, Finland ), officially the Republic of Finland (; ), is a Nordic country in Northern Europe. It shares land borders with Sweden to the northwest, Norway to the north, and Russia to the east, with the Gulf of B ...
, a scientist named Heikki Rusko has designed a "high-altitude house." The air inside the house, which is situated at sea level, is at normal pressure but modified to have a low concentration of oxygen, about 15.3% (below the 20.9% at sea level), which is roughly equivalent to the amount of oxygen available at the high altitudes often used for altitude training due to the reduced partial pressure of oxygen at altitude. Athletes live and sleep inside the house, but perform their training outside (at normal oxygen concentrations at 20.9%). Rusko's results show improvements of EPO and red-cell levels.
Artificial altitude can also be used for hypoxic exercise, where athletes train in an altitude simulator which mimics the conditions a high altitude environment. Athletes are able to perform high intensity training at lower velocities and thus produce less stress on the musculoskeletal system.[ This is beneficial to an athlete who had a musculoskeletal injury and is unable to apply large amounts of stress during exercise which would normally be needed to generate high intensity cardiovascular training. Hypoxia exposure for the time of exercise alone is not sufficient to induce changes in hematologic parameters. Hematocrit and hemoglobin concentrations remain in general unchanged.][ There are a number of companies who provide altitude training system, most notably Hypoxico, Inc. who pioneered the artificial altitude training systems in the mid-1990s.
A South African scientist named Neil Stacey has proposed the opposite approach, using oxygen enrichment to provide a training environment with an oxygen partial pressure even higher than at sea level. This method is intended to increase training intensity.
]
Principles and mechanisms
Altitude training works because of the difference in atmospheric pressure between sea level and high altitude. At sea level, air is denser and there are more molecules of gas per litre of air. Regardless of altitude, air is composed of 21% oxygen and 78% nitrogen. As the altitude increases, the pressure exerted by these gases decreases. Therefore, there are fewer molecules per unit volume: this causes a decrease in partial pressures of gases in the body, which elicits a variety of physiological changes in the body that occur at high altitude.
The physiological adaptation that is mainly responsible for the performance gains achieved from altitude training, is a subject of discussion among researchers. Some, including American researchers Ben Levine and Jim Stray-Gundersen, claim it is primarily the increased red blood cell volume.
Others, including Australian researcher Chris Gore, and New Zealand researcher Will Hopkins, dispute this and instead claim the gains are primarily a result of other adaptions such as a switch to a more economic mode of oxygen utilization.
Increased red blood cell volume
At high altitudes, there is a decrease in oxygen hemoglobin saturation. This hypoxic condition causes hypoxia-inducible factor 1 (HIF1) to become stable and stimulates the production of erythropoietin
Erythropoietin (; EPO), also known as erythropoetin, haematopoietin, or haemopoietin, is a glycoprotein cytokine secreted mainly by the kidneys in response to cellular hypoxia; it stimulates red blood cell production (erythropoiesis) in the bo ...
(EPO), a hormone
A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
secreted by the kidneys
The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; blood ...
, EPO stimulates red blood cell production from bone marrow
Bone marrow is a semi-solid tissue found within the spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It is composed of hematopoietic ce ...
in order to increase hemoglobin saturation and oxygen delivery. Some athletes demonstrate a strong red blood cell response to altitude while others see little or no gain in red cell mass with chronic exposure. It is uncertain how long this adaptation takes because various studies have found different conclusions based on the amount of time spent at high altitudes.
While EPO occurs naturally in the body, it is also made synthetically to help treat patients with kidney failure
Kidney failure, also known as end-stage kidney disease, is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney failure is classified as eit ...
and to treat patients during chemotherapy
Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherap ...
. Over the past thirty years, EPO has become frequently abused by competitive athletes through blood doping
Blood doping is a form of doping in which the number of red blood cells in the bloodstream is boosted in order to enhance athletic performance. Because such blood cells carry oxygen from the lungs to the muscles, a higher concentration in the bl ...
and injections in order to gain advantages in endurance events. Abuse of EPO, however, increases RBC counts beyond normal levels (polycythemia
Polycythemia (also known as polycythaemia) is a laboratory finding in which the hematocrit (the volume percentage of red blood cells in the blood) and/or hemoglobin concentration are increased in the blood. Polycythemia is sometimes called erythr ...
) and increases the viscosity of blood, possibly leading to hypertension
Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
and increasing the likelihood of a blood clot
A thrombus (plural thrombi), colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of c ...
, heart attack
A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to the coronary artery of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may tr ...
or stroke
A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
. The natural secretion of EPO by the human kidneys can be increased by altitude training, but the body has limits on the amount of natural EPO that it will secrete, thus avoiding the harmful side effects of the illegal doping procedures.
Other mechanisms
Other mechanisms have been proposed to explain the utility of altitude training. Not all studies show a statistically significant increase in red blood cells from altitude training. One study explained the success by increasing the intensity of the training (due to increased heart and respiration rate). This improved training resulted in effects that lasted more than 15 days after return to sea level.
Another set of researchers claim that altitude training stimulates a more efficient use of oxygen by the muscles. This efficiency can arise from numerous other responses to altitude training, including angiogenesis
Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
, glucose transport, glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
, and pH regulation, each of which may partially explain improved endurance performance independent of a greater number of red blood cells. Furthermore, exercising at high altitude has been shown to cause muscular adjustments of selected gene transcripts, and improvement of mitochondrial properties in skeletal muscle.
In a study comparing rats active at high altitude versus rats active at sea level, with two sedentary control groups, it was observed that muscle fiber
A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells. A skeletal muscle cell is long and threadlike with many nuclei and is called a muscl ...
types changed according to homeostatic
In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and i ...
challenges which led to an increased metabolic efficiency during the beta oxidative cycle and citric acid cycle
The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins ...
, showing an increased utilization of ATP for aerobic performance.
Due to the lower atmospheric pressure at high altitudes, the air pressure within the breathing system must be lower than it would be at low altitudes in order for inhalation to occur. Therefore, inhalation at high altitudes typically involves a relatively greater lowering of the thoracic diaphragm than at low altitudes.
See also
*Effects of high altitude on humans
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The oxygen saturation of hemoglobin determines the content of oxygen in blood. After the human body reaches around above s ...
References
{{DEFAULTSORT:Altitude Training
Exercise physiology
Sports medicine