HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, more specifically in
multilinear algebra Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p' ...
, an alternating multilinear map is a
multilinear map In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function :f\colon V_1 \times \cdots \times V_n \to W\text where V_1,\ldots,V_n and W are ...
with all arguments belonging to the same vector space (for example, a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
or a
multilinear form In abstract algebra and multilinear algebra, a multilinear form on a vector space V over a field K is a map :f\colon V^k \to K that is separately ''K''-linear in each of its ''k'' arguments. More generally, one can define multilinear forms on ...
) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
over a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space.


Definition

Let R be a commutative ring and V, W be modules over R. A multilinear map of the form f\colon V^n \to W is said to be alternating if it satisfies the following equivalent conditions: # whenever there exists 1 \leq i \leq n-1 such that x_i = x_ then f(x_1,\ldots,x_n) = 0.. # whenever there exists 1 \leq i \neq j \leq n such that x_i = x_j then f(x_1,\ldots,x_n) = 0..


Vector spaces

Let V, W be vector spaces over the same field. Then a multilinear map of the form f\colon V^n \to W is alternating iff it satisfies the following condition: * if x_1,\ldots,x_n are
linearly dependent In the theory of vector spaces, a set (mathematics), set of vector (mathematics), vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vec ...
then f(x_1,\ldots,x_n) = 0.


Example

In a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
, the
Lie bracket In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identit ...
is an alternating bilinear map. The
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
of a matrix is a multilinear alternating map of the rows or columns of the matrix.


Properties

If any component x_i of an alternating multilinear map is replaced by x_i + c x_j for any j \neq i and c in the base
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
R, then the value of that map is not changed. Every alternating multilinear map is antisymmetric, meaning that f(\dots,x_i,x_,\dots)=-f(\dots,x_,x_i,\dots) \quad \text 1 \leq i \leq n-1, or equivalently, f(x_,\dots,x_) = (\sgn\sigma)f(x_1,\dots,x_n) \quad \text \sigma\in S_n, where S_ndenotes the
permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to it ...
of order n and \sgn\sigma is the
sign A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or me ...
of \sigma. If n! is a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (alb ...
in the base ring R, then every antisymmetric n-multilinear form is alternating.


Alternatization

Given a multilinear map of the form f : V^n \to W, the alternating multilinear map g : V^n \to W defined by g(x_1, \ldots, x_n) \mathrel \sum_ \sgn(\sigma)f(x_, \ldots, x_) is said to be the alternatization of f. Properties * The alternatization of an ''n''-multilinear alternating map is ''n''! times itself. * The alternatization of a
symmetric map In mathematics, symmetrization is a process that converts any function in n variables to a symmetric function in n variables. Similarly, antisymmetrization converts any function in n variables into an antisymmetric function. Two variables Let S ...
is zero. * The alternatization of a
bilinear map In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W ...
is bilinear. Most notably, the alternatization of any cocycle is bilinear. This fact plays a crucial role in identifying the second
cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
of a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an ornam ...
with the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
of alternating
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
s on a lattice.


See also

*
Alternating algebra In mathematics, an alternating algebra is a -graded algebra for which for all nonzero homogeneous elements and (i.e. it is an anticommutative algebra) and has the further property that for every homogeneous element of odd degree. Examples ...
*
Bilinear map In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W ...
* *
Map (mathematics) In mathematics, a map or mapping is a function in its general sense. These terms may have originated as from the process of making a geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distingui ...
*
Multilinear algebra Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p' ...
*
Multilinear map In linear algebra, a multilinear map is a function of several variables that is linear separately in each variable. More precisely, a multilinear map is a function :f\colon V_1 \times \cdots \times V_n \to W\text where V_1,\ldots,V_n and W are ...
*
Multilinear form In abstract algebra and multilinear algebra, a multilinear form on a vector space V over a field K is a map :f\colon V^k \to K that is separately ''K''-linear in each of its ''k'' arguments. More generally, one can define multilinear forms on ...
*
Symmetrization In mathematics, symmetrization is a process that converts any function in n variables to a symmetric function in n variables. Similarly, antisymmetrization converts any function in n variables into an antisymmetric function. Two variables Let S ...


Notes


References

* * * *{{Cite book , last = Rotman , first = Joseph J. , title = An Introduction to the Theory of Groups , publisher = Springer , series = Graduate Texts in Mathematics , volume = 148 , edition = 4th , year = 1995 , isbn = 0-387-94285-8 , oclc = 30028913 Functions and mappings Mathematical relations Multilinear algebra fr:Application multilinéaire#Application alternée