HOME

TheInfoList



OR:

Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
available for adsorption (which is not the same as
absorption Absorption may refer to: Chemistry and biology * Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which ...
) or chemical reactions. Activation is analogous to making
popcorn Popcorn (also called popped corn, popcorns or pop-corn) is a variety of corn kernel which expands and puffs up when heated; the same names also refer to the foodstuff produced by the expansion. A popcorn kernel's strong hull contains the se ...
from dried corn kernels: popcorn is light, fluffy, and has a surface area that is much larger than the kernels. ''Activated'' is sometimes replaced by ''active''. Due to its high degree of microporosity, one gram of activated carbon has a surface area in excess of as determined by gas adsorption. Charcoal, before activation, has a specific surface area in the range of . An activation level sufficient for useful application may be obtained solely from high surface area. Further chemical treatment often enhances adsorption properties. Activated carbon is usually derived from waste products such as coconut husks; waste from paper mills has been studied as a source. These bulk sources are converted into
charcoal Charcoal is a lightweight black carbon residue produced by strongly heating wood (or other animal and plant materials) in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, cal ...
before being 'activated'. When derived from coal it is referred to as activated coal. Activated coke is derived from coke.


Uses

Activated carbon is used in methane and hydrogen storage,
air purification An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating ...
, capacitive deionization, supercapacitive swing adsorption, solvent recovery, decaffeination, gold purification, metal extraction, water purification, medicine, sewage treatment, air filters in respirators, filters in compressed air, teeth whitening, production of hydrogen chloride, edible electronics, and many other applications.


Industrial

One major industrial application involves use of activated carbon in metal finishing for purification of electroplating solutions. For example, it is the main purification technique for removing organic impurities from bright nickel plating solutions. A variety of organic chemicals are added to plating solutions for improving their deposit qualities and for enhancing properties like brightness, smoothness, ductility, etc. Due to passage of direct current and electrolytic reactions of anodic oxidation and cathodic reduction, organic additives generate unwanted breakdown products in solution. Their excessive build up can adversely affect plating quality and physical properties of deposited metal. Activated carbon treatment removes such impurities and restores plating performance to the desired level.


Medical

Activated carbon is used to treat
poison Poison is a chemical substance that has a detrimental effect to life. The term is used in a wide range of scientific fields and industries, where it is often specifically defined. It may also be applied colloquially or figuratively, with a broa ...
ings and overdoses following oral ingestion. Tablets or capsules of activated carbon are used in many countries as an over-the-counter drug to treat diarrhea, indigestion, and
flatulence Flatulence, in humans, is the expulsion of gas from the intestines via the anus, commonly referred to as farting. "Flatus" is the medical word for gas generated in the stomach or bowels. A proportion of intestinal gas may be swallowed environm ...
. However, activated charcoal shows no effect on intestinal gas and diarrhea, and is, ordinarily, medically ineffective if poisoning resulted from ingestion of corrosive agents, boric acid, petroleum products, and is particularly ineffective against poisonings of strong acids or bases,
cyanide Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of a ...
, iron, lithium, arsenic,
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
, ethanol or ethylene glycol. Activated carbon will not prevent these chemicals from being absorbed into the human body. It is on the World Health Organization's List of Essential Medicines. Incorrect application (e.g. into the lungs) results in
pulmonary aspiration Pulmonary aspiration is the entry of material such as pharyngeal secretions, food or drink, or stomach contents from the oropharynx or gastrointestinal tract, into the larynx (voice box) and lower respiratory tract, the portions of the respira ...
, which can sometimes be fatal if immediate medical treatment is not initiated.


Analytical chemistry

Activated carbon, in 50% w/w combination with celite, is used as stationary phase in low-pressure chromatographic separation of
carbohydrates In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or may ...
(mono-, di-, tri- saccharides) using ethanol solutions (5–50%) as mobile phase in analytical or preparative protocols. Activated carbon is useful for extracting the direct oral anticoagulants (DOACs) such as dabigatran, apixaban, rivaroxaban and edoxaban from blood plasma samples. For this purpose it has been made into "minitablets", each containing 5 mg activated carbon for treating 1ml samples of DOAC. Since this activated carbon has no effect on blood clotting factors, heparin or most other anticoagulants this allows a plasma sample to be analyzed for abnormalities otherwise affected by the DOACs.


Environmental

Carbon adsorption has numerous applications in removing pollutants from air or water streams both in the field and in industrial processes such as: * Spill cleanup * Groundwater remediation * Drinking water
filtration Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter ...
*
Air purification An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating ...
* Volatile organic compounds capture from painting, dry cleaning, gasoline dispensing operations, and other processes * Volatile organic compounds recovery (solvent recovery systems, SRU) from flexible packaging, converting, coating, and other processes. During early implementation of the 1974 Safe Drinking Water Act in the US, EPA officials developed a rule that proposed requiring drinking water treatment systems to use granular activated carbon. Because of its high cost, the so-called GAC rule encountered strong opposition across the country from the water supply industry, including the largest water utilities in California. Hence, the agency set aside the rule. Activated carbon filtration is an effective water treatment method due to its multi-functional nature. There are specific types of activated carbon filtration methods and equipment that are indicated – depending upon the contaminants involved. Activated carbon is also used for the measurement of radon concentration in air.


Agricultural

Activated carbon (charcoal) is an allowed substance used by organic farmers in both livestock production and wine making. In livestock production it is used as a pesticide, animal feed additive, processing aid, nonagricultural ingredient and disinfectant. In organic winemaking, activated carbon is allowed for use as a processing agent to adsorb brown color pigments from white grape concentrates. It is sometimes used as biochar.


Distilled alcoholic beverage purification

Activated carbon filters (AC filters) can be used to filter vodka and whiskey of
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
impurities which can affect color, taste, and odor. Passing an organically impure vodka through an activated carbon filter at the proper flow rate will result in vodka with an identical alcohol content and significantly increased organic purity, as judged by odor and taste.


Fuel storage

Research is being done testing various activated carbons' ability to store natural gas and hydrogen gas. The porous material acts like a sponge for different types of gases. The gas is attracted to the carbon material via Van der Waals forces. Some carbons have been able to achieve bonding energies of 5–10 kJ per mol. The gas may then be desorbed when subjected to higher temperatures and either combusted to do work or in the case of hydrogen gas extracted for use in a hydrogen fuel cell. Gas storage in activated carbons is an appealing gas storage method because the gas can be stored in a low pressure, low mass, low volume environment that would be much more feasible than bulky on-board pressure tanks in vehicles. The United States Department of Energy has specified certain goals to be achieved in the area of research and development of nano-porous carbon materials. All of the goals are yet to be satisfied but numerous institutions, including the ALL-CRAFT program, are continuing to conduct work in this field.


Gas purification

Filters with activated carbon are usually used in compressed air and gas purification to remove oil vapors, odor, and other hydrocarbons from the air. The most common designs use a 1-stage or 2 stage filtration principle in which activated carbon is embedded inside the filter media. Activated carbon filters are used to retain radioactive gases within the air vacuumed from a nuclear boiling water reactor turbine condenser. The large charcoal beds adsorb these gases and retain them while they rapidly decay to non-radioactive solid species. The solids are trapped in the charcoal particles, while the filtered air passes through.


Chemical purification

Activated carbon is commonly used on the laboratory scale to purify solutions of organic molecules containing unwanted colored organic impurities. Filtration over activated carbon is used in large scale fine chemical and pharmaceutical processes for the same purpose. The carbon is either mixed with the solution then filtered off or immobilized in a filter.


Mercury scrubbing

Activated carbon, often infused with sulfur or iodine, is widely used to trap mercury emissions from
coal-fired power station A coal-fired power station or coal power plant is a thermal power station which burns coal to generate electricity. Worldwide, there are about 8,500 coal-fired power stations totaling over 2,000 gigawatts Nameplate capacity, capacity. They ...
s, medical
incinerators Incineration is a list of solid waste treatment technologies, waste treatment process that involves the combustion of substances contained in waste materials. Industrial plants for waste incineration are commonly referred to as waste-to-ene ...
, and from natural gas at the wellhead. However, despite its effectiveness, activated carbon is expensive to use. Since it is often not recycled, the mercury-laden activated carbon presents a disposal dilemma. If the activated carbon contains less than 260 ppm mercury, United States federal regulations allow it to be stabilized (for example, trapped in concrete) for landfilling. However, waste containing greater than 260 ppm is considered to be in the high-mercury subcategory and is banned from landfilling (Land-Ban Rule). This material is now accumulating in warehouses and in deep abandoned mines at an estimated rate of 100 tons per year. The problem of disposal of mercury-laden activated carbon is not unique to the United States. In the Netherlands, this mercury is largely recovered and the activated carbon is disposed of by complete burning, forming carbon dioxide ().


Food additive

Activated, food-grade charcoal became a
food trend Food trends are widespread changes in food preferences. Some such trends prove to be long-lasting. Food trends are often discussed in magazines devoted to cuisine, and around the internet. Duration Although certain food trends may be more of a f ...
in 2016, being used as an additive to impart a "slightly smoky" taste and a dark coloring to products including hotdogs, ice cream, pizza bases and bagels. People taking medication, including birth control pills and
antidepressant Antidepressants are a class of medication used to treat major depressive disorder, anxiety disorders, chronic pain conditions, and to help manage addictions. Common side-effects of antidepressants include dry mouth, weight gain, dizziness, hea ...
s, are advised to avoid novelty foods or drinks that use activated charcoal coloring, as it can render the medication ineffective.


Skin care

The adsorbing aspects of activated charcoal have made it a popular additive in many skin care products. Products such as Activated Charcoal Soaps and Activated Charcoal Face Masks and scrubs combine the use of the charcoal's adsorption ability along with the cleansing ability of soap.


Structure of activated carbon

The structure of activated carbon has long been a subject of debate. In a book published in 2006, Harry Marsh and Francisco Rodríguez-Reinoso considered more than 15 models for the structure, without coming to a definite conclusion about which was correct. Recent work using aberration-corrected transmission electron microscopy has suggested that activated carbons may have a structure related to that of the fullerenes, with pentagonal and heptagonal carbon rings.


Production

Activated carbon is carbon produced from carbonaceous source materials such as bamboo, coconut husk, willow peat, wood, coir,
lignite Lignite, often referred to as brown coal, is a soft, brown, combustible, sedimentary rock formed from naturally compressed peat. It has a carbon content around 25–35%, and is considered the lowest rank of coal due to its relatively low heat ...
, coal, and petroleum pitch. It can be produced (activated) by one of the following processes: # Physical activation: The source material is developed into activated carbon using hot gases. Air is then introduced to burn out the gasses, creating a graded, screened and de-dusted form of activated carbon. This is generally done by using one or more of the following processes: #* '' Carbonization'': Material with carbon content is
pyrolyzed The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements ''pyr ...
at temperatures in the range 600–900 °C, usually in an inert atmosphere with gases such as argon or nitrogen #* ''Activation/oxidation'': Raw material or carbonized material is exposed to oxidizing atmospheres (oxygen or steam) at temperatures above 250 °C, usually in the temperature range of 600–1200 °C. The activation is performed by heating the sample for 1 h in a muffle furnace at 450 °C in the presence of air. # Chemical activation: The carbon material is impregnated with certain chemicals. The chemical is typically an
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
, strong base, or a salt ( phosphoric acid 25%, potassium hydroxide 5%,
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
5%, calcium chloride 25%, and zinc chloride 25%). The carbon is then subjected to high temperatures (250–600 °C). It is believed that the temperature activates the carbon at this stage by forcing the material to open up and have more microscopic pores. Chemical activation is preferred to physical activation owing to the lower temperatures, better quality consistency, and shorter time needed for activating the material. The Dutch company Norit NV, part of the Cabot Corporation, is the largest producer of activated carbon in the world.
Haycarb Haycarb PLC is a coconut shell-based activated carbon manufacturing company in Sri Lanka. Haycarb was incorporated in 1973. The company controls 16% of the world's market share. Haycarb operates manufacturing plants in Sri Lanka, Thailand and Indo ...
, a Sri Lankan coconut shell-based company controls 16% of the global market share.


Classification

Activated carbons are complex products which are difficult to classify on the basis of their behaviour, surface characteristics and other fundamental criteria. However, some broad classification is made for general purposes based on their size, preparation methods, and industrial applications.


Powdered activated carbon

Normally, activated carbons (R 1) are made in particulate form as powders or fine granules less than 1.0 mm in size with an average diameter between 0.15 and 0.25 mm. Thus they present a large surface to volume ratio with a small diffusion distance. Activated carbon (R 1) is defined as the activated carbon particles retained on a 50-mesh sieve (0.297 mm). Powdered activated carbon (PAC) material is finer material. PAC is made up of crushed or ground carbon particles, 95–100% of which will pass through a designated mesh sieve. The
ASTM ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, an ...
classifies particles passing through an 80-mesh sieve (0.177 mm) and smaller as PAC. It is not common to use PAC in a dedicated vessel, due to the high head loss that would occur. Instead, PAC is generally added directly to other process units, such as raw water intakes, rapid mix basins, clarifiers, and gravity filters.


Granular activated carbon

Granular activated carbon (GAC) has a relatively larger particle size compared to powdered activated carbon and consequently, presents a smaller external surface. Diffusion of the adsorbate is thus an important factor. These carbons are suitable for adsorption of gases and vapors, because gaseous substances diffuse rapidly. Granulated carbons are used for air filtration and water treatment, as well as for general deodorization and separation of components in flow systems and in rapid mix basins. GAC can be obtained in either granular or extruded form. GAC is designated by sizes such as 8×20, 20×40, or 8×30 for liquid phase applications and 4×6, 4×8 or 4×10 for vapor phase applications. A 20×40 carbon is made of particles that will pass through a U.S. Standard Mesh Size No. 20 sieve (0.84 mm) (generally specified as 85% passing) but be retained on a U.S. Standard Mesh Size No. 40 sieve (0.42 mm) (generally specified as 95% retained). AWWA (1992) B604 uses the 50-mesh sieve (0.297 mm) as the minimum GAC size. The most popular aqueous-phase carbons are the 12×40 and 8×30 sizes because they have a good balance of size, surface area, and head loss characteristics.


Extruded activated carbon (EAC)

Extruded activated carbon (EAC) combines powdered activated carbon with a binder, which are fused together and extruded into a cylindrical shaped activated carbon block with diameters from 0.8 to 130 mm. These are mainly used for gas phase applications because of their low pressure drop, high mechanical strength and low dust content. Also sold as CTO filter (Chlorine, Taste, Odor).


Bead activated carbon (BAC)

Bead activated carbon (BAC) is made from petroleum pitch and supplied in diameters from approximately 0.35 to 0.80 mm. Similar to EAC, it is also noted for its low pressure drop, high mechanical strength and low dust content, but with a smaller grain size. Its spherical shape makes it preferred for fluidized bed applications such as water filtration.


Impregnated carbon

Porous carbons containing several types of inorganic impregnate such as
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
and silver.
Cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s such as aluminium, manganese, zinc, iron, lithium, and calcium have also been prepared for specific application in air pollution control especially in museums and galleries. Due to its antimicrobial and antiseptic properties, silver loaded activated carbon is used as an adsorbent for purification of domestic water. Drinking water can be obtained from natural water by treating the natural water with a mixture of activated carbon and aluminium hydroxide Al(OH)3, a Flocculation, flocculating agent. Impregnated carbons are also used for the adsorption of
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
(H2S) and thiols. Adsorption rates for H2S as high as 50% by weight have been reported.


Polymer coated carbon

This is a process by which a porous carbon can be coated with a biocompatible polymer to give a smooth and permeable coat without blocking the pores. The resulting carbon is useful for hemoperfusion. Hemoperfusion is a treatment technique in which large volumes of the patient's blood are passed over an adsorbent substance in order to remove toxic substances from the blood.


Woven carbon

There is a technology of processing technical rayon fiber into activated carbon cloth for carbon filtering. Adsorption capacity of activated cloth is greater than that of activated charcoal ( BET theory) surface area: 500–1500 m2/g, pore volume: 0.3–0.8 cm3/g). Thanks to the different forms of activated material, it can be used in a wide range of applications (
supercapacitors A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than other capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and Rechargeable ba ...
, dor Absorber

CBRN-defense industry etc.).


Properties

A gram of activated carbon can have a surface area in excess of , with being readily achievable. Carbon
aerogel Aerogels are a class of synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid with extremely low ...
s, while more expensive, have even higher surface areas, and are used in special applications. Under an electron microscope, the high surface-area structures of activated carbon are revealed. Individual particles are intensely convoluted and display various kinds of porosity; there may be many areas where flat surfaces of graphite-like material run parallel to each other, separated by only a few nanometers or so. These
micropore A microporous material is a material containing pores with diameters less than 2 nm. Examples of microporous materials include zeolites and metal-organic frameworks. Porous materials are classified into several kinds by their size. The recom ...
s provide superb conditions for adsorption to occur, since adsorbing material can interact with many surfaces simultaneously. Tests of adsorption behaviour are usually done with nitrogen gas at 77 K under high vacuum, but in everyday terms activated carbon is perfectly capable of producing the equivalent, by adsorption from its environment, liquid water from
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization ...
at and a pressure of 1/10,000 of an
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
. James Dewar, the scientist after whom the Dewar ( vacuum flask) is named, spent much time studying activated carbon and published a paper regarding its adsorption capacity with regard to gases. In this paper, he discovered that cooling the carbon to liquid nitrogen temperatures allowed it to adsorb significant quantities of numerous air gases, among others, that could then be recollected by simply allowing the carbon to warm again and that coconut based carbon was superior for the effect. He uses oxygen as an example, wherein the activated carbon would typically adsorb the atmospheric concentration (21%) under standard conditions, but release over 80% oxygen if the carbon was first cooled to low temperatures. Physically, activated carbon binds materials by van der Waals force or London dispersion force. Activated carbon does not bind well to certain chemicals, including
alcohol Alcohol most commonly refers to: * Alcohol (chemistry), an organic compound in which a hydroxyl group is bound to a carbon atom * Alcohol (drug), an intoxicant found in alcoholic drinks Alcohol may also refer to: Chemicals * Ethanol, one of sev ...
s,
diol A diol is a chemical compound containing two hydroxyl groups ( groups). An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified. The most common industrial diol is e ...
s, strong
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
s and bases, metals and most inorganics, such as lithium, sodium, iron, lead, arsenic,
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reacti ...
, and boric acid. Activated carbon adsorbs
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
very well. The iodine capacity, mg/g, (
ASTM ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, an ...
D28 Standard Method test) may be used as an indication of total surface area. Carbon monoxide is not well adsorbed by activated carbon. This should be of particular concern to those using the material in filters for respirators, fume hoods or other gas control systems as the gas is undetectable to the human senses, toxic to metabolism and neurotoxic. Substantial lists of the common industrial and agricultural gases adsorbed by activated carbon can be found online. Activated carbon can be used as a substrate for the application of various chemicals to improve the adsorptive capacity for some inorganic (and problematic organic) compounds such as
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
(H2S), ammonia (NH3), formaldehyde (HCOH),
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
(Hg) and radioactive iodine-131(131I). This property is known as chemisorption.


Iodine number

Many carbons preferentially adsorb small molecules. Iodine number is the most fundamental parameter used to characterize activated carbon performance. It is a measure of activity level (higher number indicates higher degree of activation) often reported in mg/g (typical range 500–1200 mg/g). It is a measure of the micropore content of the activated carbon (0 to 20  Å, or up to 2  nm) by adsorption of iodine from solution. It is equivalent to surface area of carbon between 900 and 1100 m2/g. It is the standard measure for liquid-phase applications. Iodine number is defined as the milligrams of iodine adsorbed by one gram of carbon when the iodine concentration in the residual filtrate is at a concentration of 0.02 normal (i.e. 0.02N). Basically, iodine number is a measure of the iodine adsorbed in the pores and, as such, is an indication of the pore volume available in the activated carbon of interest. Typically, water-treatment carbons have iodine numbers ranging from 600 to 1100. Frequently, this parameter is used to determine the degree of exhaustion of a carbon in use. However, this practice should be viewed with caution, as chemical interactions with the adsorbate may affect the iodine uptake, giving false results. Thus, the use of iodine number as a measure of the degree of exhaustion of a carbon bed can only be recommended if it has been shown to be free of chemical interactions with adsorbates and if an experimental correlation between iodine number and the degree of exhaustion has been determined for the particular application.


Molasses

Some carbons are more adept at adsorbing large molecules.
Molasses number Molasses () is a viscous substance resulting from refining sugarcane or sugar beets into sugar. Molasses varies in the amount of sugar, method of extraction and age of the plant. Sugarcane molasses is primarily used to sweeten and flavour foods. ...
or molasses efficiency is a measure of the
mesopore A mesoporous material (or super nanoporous ) is a nanoporous material containing pores with diameters between 2 and 50 nm, according to IUPAC nomenclature. For comparison, IUPAC defines microporous material as a material having pores smaller ...
content of the activated carbon (greater than 20 Å, or larger than 2 nm) by adsorption of molasses from solution. A high molasses number indicates a high adsorption of big molecules (range 95–600). Caramel dp (decolorizing performance) is similar to molasses number. Molasses efficiency is reported as a percentage (range 40%–185%) and parallels molasses number (600 = 185%, 425 = 85%). The European molasses number (range 525–110) is inversely related to the North American molasses number. Molasses Number is a measure of the degree of decolorization of a standard molasses solution that has been diluted and standardized against standardized activated carbon. Due to the size of color bodies, the molasses number represents the potential pore volume available for larger adsorbing species. As all of the pore volume may not be available for adsorption in a particular waste water application, and as some of the adsorbate may enter smaller pores, it is not a good measure of the worth of a particular activated carbon for a specific application. Frequently, this parameter is useful in evaluating a series of active carbons for their rates of adsorption. Given two active carbons with similar pore volumes for adsorption, the one having the higher molasses number will usually have larger feeder pores resulting in more efficient transfer of adsorbate into the adsorption space.


Tannin

Tannins are a mixture of large and medium size molecules. Carbons with a combination of macropores and
mesopores A mesoporous material (or super nanoporous ) is a nanoporous material containing pores with diameters between 2 and 50 nm, according to IUPAC nomenclature. For comparison, IUPAC defines microporous material as a material having pores smaller ...
adsorb tannins. The ability of a carbon to adsorb tannins is reported in parts per million concentration (range 200 ppm–362 ppm).


Methylene blue

Some carbons have a mesopore (20 Å to 50 Å, or 2 to 5 nm) structure which adsorbs medium size molecules, such as the dye
methylene blue Methylthioninium chloride, commonly called methylene blue, is a salt used as a dye and as a medication. Methylene blue is a thiazine dye. As a medication, it is mainly used to treat methemoglobinemia by converting the ferric iron in hemoglobin ...
. Methylene blue adsorption is reported in g/100g (range 11–28 g/100g).


Dechlorination

Some carbons are evaluated based on the dechlorination half-life length, which measures the chlorine-removal efficiency of activated carbon. The dechlorination half-value length is the depth of carbon required to reduce the chlorine concentration by 50%. A lower half-value length indicates superior performance.


Apparent density

The solid or skeletal density of activated carbons will typically range between 2000 and 2100 kg/m3 (125–130 lbs./cubic foot). However, a large part of an activated carbon sample will consist of air space between particles, and the actual or apparent density will therefore be lower, typically 400 to 500 kg/m3 (25–31 lbs./cubic foot). Higher density provides greater volume activity and normally indicates better-quality activated carbon. ASTM D 2854 -09 (2014) is used to determine the apparent density of activated carbon.


Hardness/abrasion number

It is a measure of the activated carbon's resistance to attrition. It is an important indicator of activated carbon to maintain its physical integrity and withstand frictional forces. There are large differences in the hardness of activated carbons, depending on the raw material and activity levels.


Ash content

Ash reduces the overall activity of activated carbon and reduces the efficiency of reactivation: the amount is exclusively dependent on the base raw material used to produce the activated carbon (e.g. coconut, wood, coal, etc.). The metal oxides (Fe2O3) can leach out of activated carbon resulting in discoloration. Acid/water-soluble ash content is more significant than total ash content. Soluble ash content can be very important for aquarists, as ferric oxide can promote algal growths. A carbon with a low soluble ash content should be used for marine, freshwater fish and reef tanks to avoid heavy metal poisoning and excess plant/algal growth.
ASTM ASTM International, formerly known as American Society for Testing and Materials, is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, an ...
(D2866 Standard Method test) is used to determine the ash content of activated carbon.


Carbon tetrachloride activity

Measurement of the porosity of an activated carbon by the adsorption of saturated
carbon tetrachloride Carbon tetrachloride, also known by many other names (such as tetrachloromethane, also IUPAC nomenclature of inorganic chemistry, recognised by the IUPAC, carbon tet in the cleaning industry, Halon-104 in firefighting, and Refrigerant-10 in HVAC ...
vapour.


Particle size distribution

The finer the particle size of an activated carbon, the better the access to the surface area and the faster the rate of adsorption kinetics. In vapour phase systems this needs to be considered against pressure drop, which will affect energy cost. Careful consideration of particle size distribution can provide significant operating benefits. However, in the case of using activated carbon for adsorption of minerals such as gold, the particle size should be in the range of . Activated carbon with particle size less than 1 mm would not be suitable for elution (the stripping of mineral from an activated carbon).


Modification of properties and reactivity

Acid-base, oxidation-reduction and specific adsorption characteristics are strongly dependent on the composition of the surface functional groups.Philippe Serp, José Luis Figueiredo, Carbon Materials for Catalysis, Wiley, – 2009, – 550 p. The surface of conventional activated carbon is reactive, capable of oxidation by atmospheric oxygen and oxygen
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
steam, and also carbon dioxide and ozone. Oxidation in the liquid phase is caused by a wide range of reagents (HNO3, H2O2, KMnO4). Through the formation of a large number of basic and acidic groups on the surface of oxidized carbon to sorption and other properties can differ significantly from the unmodified forms. Activated carbon can be nitrogenated by natural products or polymers or processing of carbon with nitrogenating
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s. Activated carbon can interact with chlorine, bromine and
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reacti ...
. Surface of activated carbon, like other carbon materials can be fluoralkylated by treatment with (per)fluoropolyether peroxide in a liquid phase, or with wide range of fluoroorganic substances by CVD-method. Such materials combine high hydrophobicity and chemical stability with electrical and thermal conductivity and can be used as electrode material for super capacitors. Sulfonic acid functional groups can be attached to activated carbon to give "starbons" which can be used to selectively catalyse the esterification of fatty acids. Formation of such activated carbons from halogenated precursors gives a more effective catalyst which is thought to be a result of remaining halogens improving stability. It is reported about synthesis of activated carbon with chemically grafted superacid sites –CF2SO3H. Some of the chemical properties of activated carbon have been attributed to presence of the surface active carbon double bond. The Polyani adsorption theory is a popular method for analyzing adsorption of various organic substances to their surface.


Examples of adsorption


Heterogeneous catalysis

The most commonly encountered form of chemisorption in industry, occurs when a solid catalyst interacts with a gaseous feedstock, the reactant/s. The adsorption of reactant/s to the catalyst surface creates a chemical bond, altering the electron density around the reactant molecule and allowing it to undergo reactions that would not normally be available to it.


Reactivation and regeneration

The reactivation or the regeneration of activated carbons involves restoring the adsorptive capacity of saturated activated carbon by desorbing adsorbed contaminants on the activated carbon surface.


Thermal reactivation

The most common regeneration technique employed in industrial processes is thermal reactivation. The thermal regeneration process generally follows three steps: * Adsorbent drying at approximately * High temperature desorption and decomposition () under an inert atmosphere * Residual organic gasification by a non-oxidising gas (steam or carbon dioxide) at elevated temperatures () The heat treatment stage utilises the
exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e ...
nature of adsorption and results in desorption, partial cracking and polymerization of the adsorbed organics. The final step aims to remove charred organic residue formed in the porous structure in the previous stage and re-expose the porous carbon structure regenerating its original surface characteristics. After treatment the adsorption column can be reused. Per adsorption-thermal regeneration cycle between 5–15 wt% of the carbon bed is burnt off resulting in a loss of adsorptive capacity. Thermal regeneration is a high energy process due to the high required temperatures making it both an energetically and commercially expensive process. Plants that rely on thermal regeneration of activated carbon have to be of a certain size before it is economically viable to have regeneration facilities onsite. As a result, it is common for smaller waste treatment sites to ship their activated carbon cores to specialised facilities for regeneration.


Other regeneration techniques

Current concerns with the high energy/cost nature of thermal regeneration of activated carbon has encouraged research into alternative regeneration methods to reduce the environmental impact of such processes. Though several of the regeneration techniques cited have remained areas of purely academic research, some alternatives to thermal regeneration systems have been employed in industry. Current alternative regeneration methods are: * TSA (thermal swing adsorption) and/or PSA ( pressure swing adsorption) processes: through convection (heat transfer) using
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization ...
, "hot" inert gas (typically heated nitrogen (150–250 °C (302–482 °F))), or vacuum (combining TSA and PSA processes) in situ regeneration * MWR ( microwave regeneration) * Chemical and solvent regeneration * Microbial regeneration * Electrochemical regeneration * Ultrasonic regeneration * Wet air oxidation


See also

*
Activated charcoal cleanse Activated charcoal cleanses, also known as charcoal detoxes, are a pseudoscientific use of a proven medical intervention. Activated charcoal is available in powder, tablet and liquid form. Its proponents claim the use of activated charcoal o ...
* Biochar * Bamboo charcoal * Binchōtan * Bone char * Carbon filtering *
Carbocatalysis Carbocatalysis is a form of catalysis that uses heterogeneous carbon materials for the transformation or synthesis of organic or inorganic substrates. The catalysts are characterized by their high surface areas, surface functionality, and large, a ...
*
Conjugated microporous polymer Conjugated microporous polymers (CMPs) are a sub-class of porous materials that are related to structures such as zeolites, metal-organic frameworks, and covalent organic frameworks, but are amorphous in nature, rather than crystalline. CMPs are a ...
* Hydrogen storage * Kværner-process * Onboard refueling vapor recovery


References


External links


"Imaging the atomic structure of activated carbon"
– '' Journal of Physics: Condensed Matter''
"How Does Activated Carbon Work?"
at ''
Slate Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. It is the finest grained foliated metamorphic rock. ...
''
"Worshiping the False Idols of Wellness"
on activated charcoal as a useless wellness practice at ''The New York Times'' {{DEFAULTSORT:Activated Carbon Allotropes of carbon Filters Toxicology treatments Excipients World Health Organization essential medicines Gas technologies Charcoal