Acid Over
   HOME

TheInfoList



OR:

In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequence of database operations that satisfies the ACID properties (which can be perceived as a single logical operation on the data) is called a ''transaction''. For example, a transfer of funds from one bank account to another, even involving multiple changes such as debiting one account and crediting another, is a single transaction. In 1983,
Andreas Reuter Andreas Reuter (born October 31, 1949) is a German computer science professor and research manager. His research focuses on databases, transaction systems, and parallel and distributed computer systems. Reuter has been scientific and executive dir ...
and Theo Härder coined the acronym ''ACID'', building on earlier work by Jim Gray who named atomicity, consistency, and durability, but not isolation, when characterizing the transaction concept. These four properties are the major guarantees of the transaction paradigm, which has influenced many aspects of development in database systems. According to Gray and Reuter, the IBM Information Management System supported ACID transactions as early as 1973 (although the acronym was created later).


Characteristics

The characteristics of these four properties as defined by Reuter and Härder are as follows:


Atomicity

Transactions are often composed of multiple statements. Atomicity guarantees that each transaction is treated as a single "unit", which either succeeds completely or fails completely: if any of the statements constituting a transaction fails to complete, the entire transaction fails and the database is left unchanged. An atomic system must guarantee atomicity in each and every situation, including power failures, errors, and crashes. A guarantee of atomicity prevents updates to the database from occurring only partially, which can cause greater problems than rejecting the whole series outright. As a consequence, the transaction cannot be observed to be in progress by another database client. At one moment in time, it has not yet happened, and at the next, it has already occurred in whole (or nothing happened if the transaction was canceled in progress).


Consistency

Consistency ensures that a transaction can only bring the database from one consistent state to another, preserving database invariants: any data written to the database must be valid according to all defined rules, including constraints, cascades, triggers, and any combination thereof. This prevents database corruption by an illegal transaction. Referential integrity guarantees the
primary key In the relational model of databases, a primary key is a ''specific choice'' of a ''minimal'' set of attributes (Column (database), columns) that uniquely specify a tuple (Row (database), row) in a Relation (database), relation (Table (database), t ...
foreign key A foreign key is a set of attributes in a table that refers to the primary key of another table. The foreign key links these two tables. Another way to put it: In the context of relational databases, a foreign key is a set of attributes subject to ...
relationship.C. J. Date, "SQL and Relational Theory: How to Write Accurate SQL Code 2nd edition", ''O'reilly Media, Inc.'', 2012, pg. 180.


Isolation

Transactions are often executed concurrently (e.g., multiple transactions reading and writing to a table at the same time). Isolation ensures that concurrent execution of transactions leaves the database in the same state that would have been obtained if the transactions were executed sequentially. Isolation is the main goal of concurrency control; depending on the isolation level used, the effects of an incomplete transaction might not be visible to other transactions.


Durability

Durability guarantees that once a transaction has been committed, it will remain committed even in the case of a system failure (e.g., power outage or crash). This usually means that completed transactions (or their effects) are recorded in non-volatile memory.


Examples

The following examples further illustrate the ACID properties. In these examples, the database table has two columns, A and B. An integrity constraint requires that the value in A and the value in B must sum to 100. The following SQL code creates a table as described above:CREATE TABLE acidtest (A INTEGER, B INTEGER, CHECK (A + B = 100));


Atomicity

Atomicity is the guarantee that series of database operations in an atomic transaction will either all occur (a successful operation), or none will occur (an unsuccessful operation). The series of operations cannot be separated with only some of them being executed, which makes the series of operations "indivisible". A guarantee of atomicity prevents updates to the database from occurring only partially, which can cause greater problems than rejecting the whole series outright. In other words, atomicity means indivisibility and irreducibility. Alternatively, we may say that a logical transaction may be composed of several physical transactions. Unless and until all component physical transactions are executed, the logical transaction will not have occurred. An example of an atomic transaction is a monetary transfer from bank account A to account B. It consists of two operations, withdrawing the money from account A and saving it to account B. We would not want to see the amount removed from account A before we are sure it has also been transferred into account B. Performing these operations in an atomic transaction ensures that the database remains in a consistent state, that is, money is neither debited nor credited if either of those two operations fails.


Consistency failure

Consistency is a very general term, which demands that the data must meet all validation rules. In the previous example, the validation is a requirement that . All validation rules must be checked to ensure consistency. Assume that a transaction attempts to subtract 10 from without altering . Because consistency is checked after each transaction, it is known that before the transaction begins. If the transaction removes 10 from successfully, atomicity will be achieved. However, a validation check will show that , which is inconsistent with the rules of the database. The entire transaction must be canceled and the affected rows rolled back to their pre-transaction state. If there had been other constraints, triggers, or cascades, every single change operation would have been checked in the same way as above before the transaction was committed. Similar issues may arise with other constraints. We may have required the data types of both and to be integers. If we were then to enter, say, the value 13.5 for , the transaction will be canceled, or the system may give rise to an alert in the form of a trigger (if/when the trigger has been written to this effect). Another example would be integrity constraints, which would not allow us to delete a row in one table whose primary key is referred to by at least one
foreign key A foreign key is a set of attributes in a table that refers to the primary key of another table. The foreign key links these two tables. Another way to put it: In the context of relational databases, a foreign key is a set of attributes subject to ...
in other tables.


Isolation failure

To demonstrate isolation, we assume two transactions execute at the same time, each attempting to modify the same data. One of the two must wait until the other completes in order to maintain isolation. Consider two transactions: * T1 transfers 10 from A to B. * T2 transfers 20 from B to A. Combined, there are four actions: # T1 subtracts 10 from A. # T1 adds 10 to B. # T2 subtracts 20 from B. # T2 adds 20 to A. If these operations are performed in order, isolation is maintained, although T2 must wait. Consider what happens if T1 fails halfway through. The database eliminates T1's effects, and T2 sees only valid data. By interleaving the transactions, the actual order of actions might be: # T1 subtracts 10 from A. # T2 subtracts 20 from B. # T2 adds 20 to A. # T1 adds 10 to B. Again, consider what happens if T1 fails while modifying B in Step 4. By the time T1 fails, T2 has already modified A; it cannot be restored to the value it had before T1 without leaving an invalid database. This is known as a write-write conflict, because two transactions attempted to write to the same data field. In a typical system, the problem would be resolved by reverting to the last known good state, canceling the failed transaction T1, and restarting the interrupted transaction T2 from the good state.


Durability failure

Consider a transaction that transfers 10 from A to B. First, it removes 10 from A, then it adds 10 to B. At this point, the user is told the transaction was a success. However, the changes are still queued in the disk buffer waiting to be committed to disk. Power fails and the changes are lost, but the user assumes (understandably) that the changes persist.


Implementation

Processing a transaction often requires a sequence of operations that is subject to failure for a number of reasons. For instance, the system may have no room left on its disk drives, or it may have used up its allocated CPU time. There are two popular families of techniques: write-ahead logging and shadow paging. In both cases, locks must be acquired on all information to be updated, and depending on the level of isolation, possibly on all data that may be read as well. In write ahead logging, durability is guaranteed by copying the original (unchanged) data to a log before changing the database. That allows the database to return to a consistent state in the event of a crash. In shadowing, updates are applied to a partial copy of the database, and the new copy is activated when the transaction commits.


Locking vs. multiversioning

Many databases rely upon locking to provide ACID capabilities. Locking means that the transaction marks the data that it accesses so that the DBMS knows not to allow other transactions to modify it until the first transaction succeeds or fails. The lock must always be acquired before processing data, including data that is read but not modified. Non-trivial transactions typically require a large number of locks, resulting in substantial overhead as well as blocking other transactions. For example, if user A is running a transaction that has to read a row of data that user B wants to modify, user B must wait until user A's transaction completes.
Two-phase locking In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability.Phil Bernstein, Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987) ''Concurrency Control and Recovery in Dat ...
is often applied to guarantee full isolation. An alternative to locking is multiversion concurrency control, in which the database provides each reading transaction the prior, unmodified version of data that is being modified by another active transaction. This allows readers to operate without acquiring locks, i.e., writing transactions do not block reading transactions, and readers do not block writers. Going back to the example, when user A's transaction requests data that user B is modifying, the database provides A with the version of that data that existed when user B started his transaction. User A gets a consistent view of the database even if other users are changing data. One implementation, namely
snapshot isolation In databases, and transaction processing (transaction management), snapshot isolation is a guarantee that all reads made in a transaction will see a consistent snapshot of the database (in practice it reads the last committed values that existed at ...
, relaxes the isolation property.


Distributed transactions

Guaranteeing ACID properties in a distributed transaction across a distributed database, where no single node is responsible for all data affecting a transaction, presents additional complications. Network connections might fail, or one node might successfully complete its part of the transaction and then be required to roll back its changes because of a failure on another node. The two-phase commit protocol (not to be confused with
two-phase locking In databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability.Phil Bernstein, Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman (1987) ''Concurrency Control and Recovery in Dat ...
) provides atomicity for distributed transactions to ensure that each participant in the transaction agrees on whether the transaction should be committed or not. Briefly, in the first phase, one node (the coordinator) interrogates the other nodes (the participants), and only when all reply that they are prepared does the coordinator, in the second phase, formalize the transaction.


See also

* Eventual consistency (BASE) *
CAP theorem In theoretical computer science, the CAP theorem, also named Brewer's theorem after computer scientist Eric Brewer, states that any distributed data store can provide only two of the following three guarantees:Seth Gilbert and Nancy Lynch"Brewer' ...
* Concurrency control *
Java Transaction API The Jakarta Transactions (JTA; formerly Java Transaction API), one of the Jakarta EE APIs, enables distributed transactions to be done across multiple X/Open XA resources in a Java environment. JTA was a specification developed under the Java Commu ...
* Open Systems Interconnection *
Transactional NTFS Transactional NTFS (abbreviated TxF) is a component introduced in Windows Vista and present in later versions of the Microsoft Windows operating system that brings the concept of atomic transactions to the NTFS file system, allowing Windows applicat ...
* Two-phase commit protocol * CRUD


References

{{DEFAULTSORT:Acid Database management systems Transaction processing Concurrency control