Absorption is a
valid argument form
In logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguo ...
and
rule of inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of in ...
of
propositional logic
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations b ...
. The rule states that if
implies
, then
implies
and
. The rule makes it possible to introduce
conjunctions to
proofs
Proof most often refers to:
* Proof (truth), argument or sufficient evidence for the truth of a proposition
* Alcohol proof, a measure of an alcoholic drink's strength
Proof may also refer to:
Mathematics and formal logic
* Formal proof, a co ...
. It is called the law of absorption because the term
is "absorbed" by the term
in the
consequent
A consequent is the second half of a hypothetical proposition. In the standard form of such a proposition, it is the part that follows "then". In an implication, if ''P'' implies ''Q'', then ''P'' is called the antecedent and ''Q'' is called ...
.
[Russell and Whitehead, '']Principia Mathematica
The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
'' The rule can be stated:
:
where the rule is that wherever an instance of "
" appears on a line of a proof, "
" can be placed on a subsequent line.
Formal notation
The ''absorption'' rule may be expressed as a
sequent
In mathematical logic, a sequent is a very general kind of conditional assertion.
: A_1,\,\dots,A_m \,\vdash\, B_1,\,\dots,B_n.
A sequent may have any number ''m'' of condition formulas ''Ai'' (called " antecedents") and any number ''n'' of asse ...
:
:
where
is a
metalogic
Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, ...
al symbol meaning that
is a
syntactic consequence
Logical consequence (also entailment) is a fundamental concept in logic, which describes the relationship between statement (logic), statements that hold true when one statement logically ''follows from'' one or more statements. A Validity (lo ...
of
in some
logical system
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system.
A form ...
;
and expressed as a truth-functional
tautology or
theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
of
propositional logic
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations b ...
. The principle was stated as a theorem of propositional logic by
Russell and
Whitehead in ''
Principia Mathematica
The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
'' as:
:
where
, and
are propositions expressed in some
formal system
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system.
A form ...
.
Examples
If it will rain, then I will wear my coat.
Therefore, if it will rain then it will rain and I will wear my coat.
Proof by truth table
Formal proof
See also
*
Absorption law
In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations.
Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if:
:''a'' ¤ (''a'' ⁂ ''b'') = ''a'' ⁂ (''a'' ¤ ''b ...
References
{{Reflist
Rules of inference
Theorems in propositional logic