ALPHA Experiment
   HOME

TheInfoList



OR:

The Antihydrogen Laser Physics Apparatus (ALPHA), also known as AD-5, is an experiment at the
Antiproton Decelerator The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons ...
at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
, designed to trap neutral
antihydrogen Antihydrogen () is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed l ...
in a magnetic trap, and conduct experiments on them. The ultimate goal of this experiment is to test
CPT symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T ...
through comparison of the
atomic spectra Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wav ...
of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
antihydrogen Antihydrogen () is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed l ...
(see
hydrogen spectral series The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an ...
). The ALPHA collaboration consists of some former members of the ATHENA collaboration or AD-1 experiment (the first group to produce cold antihydrogen, in 2002), as well as a number of new members. __FORCETOC__


Experimental setup

ALPHA faces several challenges. Magnetic traps – wherein neutral atoms are trapped using their
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
s – are notoriously weak; only atoms with kinetic energies equivalent to less than one
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
may be trapped. The cold antihydrogen created first in 2002 by the
ATHENA Athena or Athene, often given the epithet Pallas, is an ancient Greek goddess associated with wisdom, warfare, and handicraft who was later syncretized with the Roman goddess Minerva. Athena was regarded as the patron and protectress of ...
and the
ATRAP __FORCETOC__ The Antihydrogen Trap (ATRAP) collaboration at the Antiproton Decelerator facility at CERN, Geneva, is responsible for the AD-2 experiment. It is a continuation of the TRAP collaboration, which started taking data for the PS196 exper ...
collaborations (AD-2) was produced by merging cold plasmas of
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s (also called antielectrons) and
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exist ...
s. While this method has been quite successful, it creates anti-atoms with kinetic energies too large to be trapped. Furthermore, to do
laser spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
on these anti-atoms, it is important that they are in their
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
, something which does not seem to be the case for the majority of the anti-atoms created thus far. Antiprotons are received from the Antiproton Decelerator and are 'mixed' with positrons from a specially-designed positron accumulator in a versatile
Penning trap A Penning trap is a device for the storage of charged particles using a homogeneous axial magnetic field and an inhomogeneous quadrupole electric field. This kind of trap is particularly well suited to precision measurements of properties of io ...
. The central region where the mixing and thus antihydrogen formation takes place is surrounded by a
superconducting Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material e ...
octupole magnet and two axially separated short solenoids "mirror-coils" to form a "minimum- B" magnetic trap. Once trapped
antihydrogen Antihydrogen () is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed l ...
can be subjected to detailed study and be compared to
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
.


Antihydrogen detection

In order to detect trapped
antihydrogen Antihydrogen () is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed l ...
atoms ALPHA also comprises a silicon vertex detector. This cylindrically shaped detector consists of three layers of silicon panels (strips). Each panel acts as a position sensitive detector for charged particles passing through. By recording how the panels are excited ALPHA can reconstruct the tracks of charged particles traveling through their detector. When an antiproton annihilates (disintegrates) the process typically results in the emission of 3–4 charged
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s. These can be observed by the ALPHA detector and by reconstructing their tracks through the detector their origin, and thus the location of the annihilation, can be determined. These tracks are quite distinct from the tracks of
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
which are also detected but are of high energy and pass straight through the detector. By carefully analyzing the tracks ALPHA distinguishes between cosmic rays and antiproton annihilation. To detect successful trapping the ALPHA trap magnet that created the minimum B-field was designed to allow it to be quickly and repeatedly de-energized. The currents' decay during de-energization has a characteristic time of 9 ms, orders of magnitude faster than similar systems. This fast turn-off and the ability to suppress false signal from cosmic rays should allow ALPHA to detect the release of even a single trapped antihydrogen atom during de-energization of the trap.


Cooling antihydrogen

In order to make antihydrogen cold enough to be trapped the ALPHA collaboration has implemented a novel technique, well known from atomic physics, called evaporative cooling. The motivation for this is that one of the main challenges of trapping antihydrogen is to make it cold enough. State-of-the art minimum-B traps like the one ALPHA comprises have depths in temperature units of order one Kelvin. As no readily available techniques exist to cool antihydrogen, the constituents must be cold and kept cold for the formation. Antiprotons and positrons are not easily cooled to cryogenic temperatures and the implementation of evaporative cooling is thus an important step towards antihydrogen trapping.


ALPHA physics

ALPHA is presently studying the
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
properties of antimatter. A preliminary experiment in 2013 found that the
gravitational mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementa ...
of antihydrogen atoms was between −65 and 110 times their
inertial mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
, leaving considerable room for refinement using larger numbers of colder antihydrogen atoms. ALPHA has succeeded to cool down antihydrogen atoms using laser light, a technique, known as
laser cooling Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) ...
, which was first demonstrated in 1978 on normal matter.


ALPHA collaboration

The ALPHA collaboration comprises the following institutions:


References

{{reflist


External Links

Record fo
ALPHA experiment
on
INSPIRE-HEP INSPIRE-HEP is an open access digital library for the field of high energy physics (HEP). It is the successor of the Stanford Physics Information Retrieval System (SPIRES) database, the main literature database for high energy physics since the 1970 ...
CERN experiments Particle experiments Antimatter